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A lot of progress in generative models has been made not only due to changes in  
models and objectives, but a lot due to deep learning progress.

Today we will discuss a few case studies and provide historical context.

Point of view
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This is a very broad overview of the field, there are many other interesting works 
that cannot be covered due to time constraints. If I missed anything, this is not a 
statement about the value of that respective work. 

There are slides with additional references at the end of the talk.

Disclaimer
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Generative modeling

Learn a model of the true underlying data distribution 
p*(x) from samples 

x1, x2 ... xn
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Generative modelling: a recipe

● Find an objective
● Find a model
● Find a way to learn the model using your objective
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The objective
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Measuring distances between distributions

How can we measure the distance between these two distributions?
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Measuring distances between distributions

Caveat: we only have samples from the true distribution.
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Why divergence/distance minimization?

- The objective of generative models is often to minimize a divergence or distance.
- Most common: Maximum likelihood (KL divergence).

Divergence and distance minimization
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KL divergence - maximum likelihood
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KL divergence - maximum likelihood

min

max
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Effects of the choice of divergence
Want to learn more?

Eslami et all, Neural 
scene representation 
and rendering, Science 
(2018)

Want to learn more?
Goodfellow, et al. NIPS 2016 Tutorial:
Generative Adversarial Networks
Arxiv (2016)
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Jensen Shannon divergence
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Other divergences and distances

Wasserstein Distance

Want to learn more?Want to learn more?
Arjovsky,, et al Wasserstein GAN
ICML (2017)
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Other divergences and distances

Wasserstein Distance

Want to learn more?Want to learn more?
Arjovsky,, et al Wasserstein GAN
ICML (2017)
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Given a (fixed) model family, different divergences can lead to a vastly 
different distribution.

Motivation for studying the effect of different divergences and distances and 
their properties.
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Generative modelling: a recipe

● Find an objective
● Find a model
● Find a way to learn the model using your objective
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The model



Mihaela Rosca, 2023

Explicit models - autoregressive models

● Pro: Very expressive
● Challenge: Slow at sampling (though can be parallelize)
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Explicit models - normalizing flows

Y

X

X and Y have the same dimension!

Challenge: modeling invertible functions using neural networks

Want to learn more?Want to learn more?
Rezende et all, Variational Inference with 
Normalizing Flows,  ICML 2015
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Explicit latent variable models

z

x
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Explicit latent variable models

z

x

max
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z

x

approximate posterior, 
usually a Gaussian

Want to learn more?
Kingma et al., Auto-Encoding Variational 
Bayes, ICLR 2014

Variational autoencoders need expressive posteriors
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Implicit models - latent variable models

Directly the sampling path, without require 
likelihoods explicitly (no need for the sum rule).

Caveat: you only get samples from the model.  

z

x
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Generative modelling: a recipe

● Find an objective
● Find a model
● Find a way to learn the model using your objective
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Done: we know everything we need to 
care about when learning about 

generative models.
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The secret sauce: 
training stability
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Historical context

A lot of progress in generative modelling has been made due to improvements in 
training stability and optimisation, as well as architectural changes.

We will now go through a few examples.
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Variational autoencoders need expressive posteriors

z

x

approximate posterior, 
usually a Gaussian
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Variational autoencoders need expressive posteriors

individual 
Gaussian 
posteriors

prior mass 
not covered by 
posteriors

Image credit: Improved Variational Inference with Inverse Autoregressive Flow, Kingma et al, Neurips 2016
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Variational autoencoders need expressive posteriors

zn

x

approximate posterior, 
usually a Gaussian

z1

Latents z1, ..., zn. 
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Variational autoencoders: flexible posteriors
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Variational autoencoders: flexible posteriors

Challenge: hard to learn.

We have a probabilistic solution, but a practical problem.
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NVAE: parametrization

The deep learning solutions:

● good activation functions
● batch normalization
● Spectral regularization for the posteriors
● residual parametrization

NVAE: A Deep Hierarchical Variational Autoencoder, Vahdat et al, Neurips 2020
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NVAE: parametrization

The deep learning solutions:

● good activation functions
● batch normalization
● Spectral regularization for the posteriors

○ encourage Lipschitz smoothness
○ posterior parameters should not change too much with changes in input

● residual parametrization for the posteriors
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NVAE: parametrization

The deep learning solutions:

● good activation functions
● batch normalization
● Spectral regularization for the posteriors
● residual parametrization for the posteriors

○ gradients flow better (encoder needs to learn the difference to the prior)
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NVAE: parametrization

The deep learning solutions:

● good activation functions
● batch normalization
● Spectral regularization for the posteriors
● residual parametrization for the encoder

Image credit: NVAE: A Deep Hierarchical Variational Autoencoder, Vahdat et al, Neurips 2020
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G(z)

generator distribution

real data distribution 

parameters 

Generator

real 
or 
generated?

Discriminator

Generative Adversarial Nets

z



Mihaela Rosca, 2023

Generative Adversarial Nets

How to answer “real or generated?” 

Based on divergences (though not exact!)

● Original GAN: JSD
● Wasserstein GAN
● MMD-GAN
● f-GANs

○ f-divergences like the KL and JSD 

● many more works! 
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Generative Adversarial Nets

Goodfellow, et al. Generative adversarial 
networks. NIPS (2014)

Karras et al. A Style-Based Generator 
Architecture for Generative 
Adversarial Networks  CVPR (2019)

?
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Generative Adversarial Nets

A lot of progress in GAN samples was made with: 

● changes to architecture
● increasing the importance of conditioning
● optimization
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Generative Adversarial Nets: Optimization

Tricks to scale GANs:

● Use Spectral Normalization
○ decreases learning rate sensitivity
○ note: model normalization technique but affects optimization 

■ (not only for GANs, also in RL)

higher is better

Image credit: Spectral Normalization for Generative Adversarial Networks,  Miyato et al,  ICLR 2018

different 
hyperparameter 

settings
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Generative Adversarial Nets: Optimization

Tricks to scale GANs:

● optimization unstable
○ large batch sizes help
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Generative Adversarial Nets: Optimization

Tricks to scale GANs:

● Adam:
○ important
○ beta1 (momentum) low: 0 or 0.5

Adam: A Method for Stochastic Optimization,  Kingma et al,  ICLR 2015
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Generative Adversarial Nets: Optimization

Tricks to scale GANs:

● Adam:
○ important
○ beta1 (momentum) low: 0 or 0.5

still, performance degrades later in training!

GAN training
Higher is better
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Generative Adversarial Nets: Optimization

Understanding optimization in generative models can be theoretical!

Observed problem: 

gradient descent and its variants (Adam) struggle to train GANs.

Idea: 

use continuous time (ODEs) to understand the training dynamics of the model!
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ODE-GAN

Theory: 

Continuous dynamics converge to a local Nash 
equilibrium.

Practical implications: 

Do not use gradient descent/Adam, but higher 
order integrators (RK4) to better follow 
continuous dynamics.

Image credit: Training Generative Adversarial Networks by Solving Ordinary Differential Equations,  Qin et al,  Neurips 2020
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Discretization Drift in Two-Player games

Question: 

What makes gradient descent be 
unstable, when its continuous 
counterpart is not?

Quantify mathematically and use it to 
improve the performance of SGD in 
GANs!

Image credit: Discretization Drift in Two-Player games,  Rosca et al,  ICML 2021
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Generative Adversarial Nets: Conditioning

insert conditioning all through the network 

(not only concatenated with the input)

Image credit: Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et al, ICLR 2018
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Diffusion models

Image credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

You can think about diffusion models as a particular formulation of hierarchical 
VAEs (though latents have same dimension as data)!

add Gaussian noise

model path

inference path
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Diffusion models

Image credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

add Gaussian noise

model path

inference path
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Diffusion models

Image credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

● Simple optimization criteria, much more stable than GANs

● Conditioning
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Diffusion models

Image credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

add Gaussian noise

model path

inference path
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Diffusion models - optimisation

Algorithm credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

regression loss to unit gaussian sample
dense learning signal due to specific 
parametrisation of Gaussian mean
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Diffusion models - conditioning

Image credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020
Great blog post on guidance: https://sander.ai/2022/05/26/guidance.html

Iterative process: natural way to insert conditioning into the sampling process. 

See: classifier guidance, classifier free guidance.

conditioning
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Maximum likelihood text LLMs

Great success with text generation done with transformers trained to maximize 
likelihood. Here too, conditioning has been crucial.

Challenge: how to stabilize transformers at larger scale (entropy collapse of 
attention layers).

Unlike other models, transformers cannot easily by trained with SGD with 
momentum, and need Adam.
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Conclusion
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Thanks!
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Understanding the effect of discretisation
ODE-GAN: Training Generative Adversarial Networks by Solving Ordinary Differential Equations, Qin et al, 
Neurips 2020

Implicit competitive regularization in gans, Schäfer et al, ICML 2021

Discretization Drift in Two-Player Games, Rosca et al, ICML 2021

The limit points of (optimistic) gradient descent in min-max optimization, Daskalakis et al, Neurips 2018

Which divergence and distance to use?
Towards Principled Methods for Training Generative Adversarial Networks, Arjovsky et al, ICLR 2017

Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step, Fedus et al, ICLR 2018

Which divergence and distance to use?
Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et al, ICLR 2018

A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al, CVPR 2019



Mihaela Rosca, 2023

Diffusion models

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al, ICML 2015

Generative Modeling by Estimating Gradients of the Data Distribution, Song et al, Neurips 2019

Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

Improved Denoising Diffusion Probabilistic Models, Nichol et al, 2021

High-Resolution Image Synthesis with Latent Diffusion Models, Rombach et al, 2022

Diffusion Models Beat GANs on Image Synthesis, Dhariwal et al, Neurips 2021

Classifier-Free Diffusion Guidance, Ho et al, NeurIPS workshop on DGMs and Applications”, 2021.

Maximum Likelihood Training of Score-Based Diffusion Models, Song et al, 2021

Hierarchical Text-Conditional Image Generation with CLIP Latents, Dhariwal et al, 2021

Blog posts:
What are Diffusion Models? by Lilian Weng
Guidance: a cheat code for diffusion models, Sander Dieleman

https://arxiv.org/abs/2101.09258
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://sander.ai/2022/05/26/guidance.html


Mihaela Rosca, 2023

Transformer LLMs and optimisation
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Diffusion - classifier guidance and classifier-free guidance

Classifier guidance: 

● does not need adjusting the training procedure, only the sampling procedure
● challenge: relying on classifier output for out of distribution, noisy data

pretrained classifier

Classifier-free guidance: 

● update the training procedure
● train both conditional and unconditional diffusion model  
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