Solving mode collapse with Autoencoder GANs

Mihaela Rosca

Thanks to: Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed

Autoencoders

Adversarial autoencoders

Improve reconstruction quality by adding a GAN loss.

Adversarial Autoencoders A. Makhzani, J. Shlens, N.Jaitly, I. Goodfellow, B. Frey

By construction, autoencoders learn to cover the entire training data.

Autoencoder GANs

Combine the reconstruction power of autoencoders with the sampling power of GANs!

How to sample?

Work on the code space - not data space.

1) Learning the code distribution

2) Match the code distribution to a desired prior Encoder match prior Decoder Decoder sampling reconstructing

Working on the code space

sampling

reconstructing

Learning the code distribution

Learning the code distribution: PPGN

Plug and play generative models

A. Nguyen, J. Clune, Y, Bengio, A. Dosovitskiy, J. Yosinski

volcano

PPGN - key ingredients

- Reconstructions
 - Autoencoder + GAN + Perceptual loss in feature space
- Samples
 - Markov Chain
 - Conditioning

PPGN

۲

PPGN: sampling using a denoising autoencoder

Learn $\frac{\partial \log p(c)}{\partial c}$ using a DAE, then sample using MCMC

Limitations of PPGN

Learning the code distribution

- Not end to end
 - Need to pretrain an encoder on the same dataset
- Depends on labels for:
 - Conditioning samples
 - Pretrained encoder

- Markov Chains
 - when to stop?
 - missing rejection step

Matching a desired prior

2) Match the code distribution to a desired prior

Sounds familiar?

Variational inference - the ELBO

likelihood term

KL term

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log \int p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z} \ge \mathbb{E}_{q_{\eta}(\mathbf{z}|\mathbf{x})}[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - \mathrm{KL}[q_{\eta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})]$$

match the prior

Variational autoencoders

AlphaGAN

combining GANs and VAEs

Variational Approaches for Auto-Encoding Generative Adversarial Networks

M. Rosca, B. Lakshminarayanan, D. Warde-Farley, S. Mohamed

AlphaGAN

data discriminator

reconstructing

sampling

estimated from samples

 $\mathrm{KL}[q_{\eta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})]$

Decoder

codes discriminator

match prior

Q: how do we estimate the terms in the ELBO using GANs?

Density ratio trick

Estimate the ratio of two distributions only from samples, by building a binary **classifier** to distinguish between them.

Using GANs for variational inference - the ELBO

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log \int p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z} \ge \mathbb{E}_{q_{\eta}(\mathbf{z}|\mathbf{x})}[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - \mathrm{KL}[q_{\eta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})]$$

ELBO - likelihood term

$$\mathbb{E}_{q_{\eta}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{q_{\eta}(\mathbf{z}|\mathbf{x})}[\log(\frac{p_{\theta}(\mathbf{x}|\mathbf{z})}{p(\mathbf{x})}p(\mathbf{x}))]$$

$$= \mathbb{E}_{q_{\eta}(\mathbf{z}|\mathbf{x})}[\log(\frac{p_{\theta}(\mathbf{x}|\mathbf{z})}{p(\mathbf{x})}] + \underbrace{\mathbb{E}_{q_{\eta}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x})]}_{\text{constant}}$$

$$x \sim p(\mathbf{x})$$

$$D \longrightarrow 0/1$$

$$x \sim p_{\theta}(\mathbf{x}|\mathbf{z})$$

ELBO - the KL term

$$-\mathrm{KL}[q_{\eta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})] = \mathbb{E}_{q_{\eta}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{z})}{q_{\eta}(\mathbf{z}|\mathbf{x})}\right]$$

From the ELBO to loss functions

We want to match:

- the reconstruction and data distributions
 - likelihood term
- the code and prior distributions
 - the KL

Tools for matching distributions:

- (GAN) the density ratio trick
- (VAE) observer likelihoods
 - reconstructions losses

New loss functions - via the density ratio trick

Reconstruction loss (avoid mode collapse) + GAN loss (improve recon quality)

Samples

Cifar10 - Inception score

Improved Techniques for Training GANs T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen

CelebA - sample diversity

Matching the prior - AGE

- the encoder is the discriminator
 - forces data codes to match the prior
 - sample codes to not match the prior

Analysis of methods

Algorithm	Likelihood		Prior		
	Observer	Ratio estimator ("synthetic")	KL (analytic)	KL (approximate)	Ratio estimator
VAE	 ✓ 		✓		
DCGAN		\checkmark			
VAE-GAN	\checkmark	*	\checkmark		
Adversarial-VB	\checkmark				\checkmark
AGE	\checkmark			\checkmark	
α -GAN (ours)	\checkmark	\checkmark			\checkmark

Table 1: Comparison of different approaches for training generative latent variable models.

Try Autoencoder GANs if mode collapse is a problem.

Combining different learning principles results in a family of novel algorithms.

References

It Takes (Only) Two: Adversarial Generator-Encoder Networks D. Ulyanov, A. Vedaldi, V. Lempitsky

Improved Techniques for Training GANs

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen

Variational Approaches for Auto-Encoding Generative Adversarial Networks

M. Rosca, B. Lakshminarayanan, D. Warde-Farley, S. Mohamed

Plug and play generative models A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiv, J. Yosinski

Adversarial Autoencoders A. Makhzani, J. Shlens, N.Jaitly, I. Goodfellow, B. Frey

Generative Adversarial Networks

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B.Xu, D. Warde-Farley, S. Ozair, A.Courville, Y. Bengio Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks L. Mescheder, S. Nowozin, A. Geiger

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks A. Radford, L. Metz, S. Chintala

Auto-Encoding Variational Bayes D. P. Kingma, M. Welling