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Why still care about GANs?



Diffusion models are producing great results, VAEs are 
catching up.



GANs

Still produce great results on image generation.



GANs

Beyond that, they provide an excellent ground to learn about:

● distributional learning principles (beyond maximum likelihood)
● optimisation in games



This is what we will talk about today.



Summary of today’s lecture

● GANs intro
● GANs and distributional divergences and distances
● GANs and optimisation in two-player games



Disclaimer

The field is large and there are many other related views on GANs, 
related works and applications. This talk presents one view.

Specifically, this talk focuses more on general principles than 
specific models. There are many interesting and useful GAN models 
out there that will not be mentioned here.

Please look at the references at the end of the slides for more 
related works and check connectedpapers.com for other works.



Generative adversarial networks



Denton, et al. Deep Generative Image 
Models using a Laplacian Pyramid of 
Adversarial Networks. NIPS (2015)

Goodfellow, et al. Generative adversarial 
networks. NIPS (2014)

Radford et al. Unsupervised 
Representation Learning with Deep 
Convolutional Generative Adversarial 
Networks  ICLR (2015)

Miyato et al. Spectral normalization for 
Generative Adversarial Networks
ICLR (2018)

Karras et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis
ICLR (2018)

Brock et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis
ICLR (2019)

Karras et al. A Style-Based Generator 
Architecture for Generative Adversarial 
Networks  CVPR (2019)



Generative adversarial networks
Want to learn more?

Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)

Learning an implicit generative model through a two player game.



generated data
G(z)

latent (“noise”) vector
z ~ P(z) generator G

Implicit latent variable models (generator)

parameters 



generated data
G(z)

latent (“noise”) vector
z ~ P(z) generator G

Implicit latent variable models (generator)

parameters 

Only samples!
No explicit likelihood!
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generated data
G(z)

latent (“noise”) vector
z ~ P(z) generator

What objective can we use?

parameters 

backprop



How can we learn this model?

Cannot do maximum likelihood, because we need to query the model 
for the likelihoods of the data. 
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Cannot do maximum likelihood, because we need to query the model 
for the likelihoods of the data. 



The types of objectives we are looking for

We have samples from the model and samples from the data.

We are thus looking for objectives which depend on the model and the 
data distribution via expectations.



The types of objectives we are looking for

We have samples from the model and samples from the data.

We are thus looking for objectives which depend on the model and the 
data distribution via expectations.



Want to learn more?
Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)

The GAN idea: introduce another model



Discriminator

G(z)

generator distributionparameters 

Generator
Discriminator

parameters 



Discriminator

G(z)

generator distributionparameters 

Generator
Discriminator

parameters 



How do we train this model, the discriminator?

G(z)

generator distribution

real data distribution 

parameters 

Generator

real 
or 
generated?

Discriminator



Original Generative Adversarial Network
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

real 
or 
generated?

Discriminator

This can be formalised as a classifier: 
associate label 1 to real data and label 0 
to generated data.



Original Generative Adversarial Network
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

log-probability that D correctly 
predicts real data x are real

Want to learn more?
Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)



Original Generative Adversarial Network
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

log-probability that D correctly predicts 
generated data G(z) are generated

Want to learn more?
Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)



Original Generative Adversarial Network
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

Discriminator’s (D) goal: maximize prediction accuracy

(classify real data as real, and generated data as generated) 

Want to learn more?
Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)



How do we train the generator?

G(z)

generator distribution

real data distribution 

parameters 

Generator

real 
or 
generated?

Discriminator



Original Generative Adversarial Network
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

Generator’s goal: minimise discriminator prediction accuracy

Want to learn more?
Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)



Original Generative Adversarial Network
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

Generator’s goal: minimise discriminator prediction accuracy

Want to learn more?
Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)



Discriminator can easily 
distinguish between real 
and generated data

The discriminator has 
to improve (edges)



Update the discriminator

G(z)

generator distribution

real data distribution 

parameters 

Generator

Discriminator

Update the discriminator to maximise V 



Update the generator

G(z)

generator distribution

real data distribution 

parameters 

Generator

Discriminator

Update the generator to minimise V 



Training GANs Want to learn more?
Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

while training:
for i in 1... number_discriminator_updates :

update the discriminator parameters to maximise V

update the generator using the new discriminator 
parameters  
    to minimise V

Want to learn more?
Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)



Generative adversarial networks
and divergence minimisation



Generative models as divergence or distance minimization

Why divergence/distance minimization?

● Generative models often to minimize a divergence or distance.
● Most common: Maximum likelihood (KL divergence).



Are GANs doing divergence minimization?
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

If the discriminator (D) is optimal: 
the generator is minimizing the Jensen Shannon divergence 

between the true and generated distributions.

Want to learn more?
Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)



Are GANs doing divergence minimization?
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

Connection to optimality:

If the discriminator (D) is optimal: 
the generator is minimizing the Jensen Shannon divergence 

between the true and generated distributions.

Want to learn more?
Goodfellow, et al. 
Generative adversarial 
networks. Neurips (2014)



From f-divergences



KL
Reverse KL

JSD Pearson

Squared Hellinger

f-divergences



Effects of the choice of divergence

Want to learn more?
Goodfellow, et al. 
Neurips 2016 Tutorial:
Generative Adversarial 
Networks. Arxiv (2016)



f-divergences
Want to learn more?

f convex, semi continuous and f(1) = 0.

Want to learn more?
Nowozin, et al f-GAN: 
Training Generative Neural 
Samplers using Variational 
Divergence Minimization.  
Neurips (2016)



Examples of f-divergences
Want to learn more?

Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

Want to learn more?Want to learn more?
Nowozin, et al f-GAN: 
Training Generative Neural 
Samplers using Variational 
Divergence Minimization.  
Neurips (2016)



Challenge with f-divergences
unknown!

Want to learn more?Want to learn more?
Nowozin, et al f-GAN: 
Training Generative Neural 
Samplers using Variational 
Divergence Minimization.  
Neurips (2016)



Variational bound on f-divergences
Want to learn more?

Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

f convex:
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Variational bound on f-divergences
Want to learn more?

Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

Want to learn more?Want to learn more?
Nowozin, et al f-GAN: 
Training Generative Neural 
Samplers using Variational 
Divergence Minimization.  
Neurips (2016)



So far... evaluating f-divergences

learning a discriminator to distinguish between 
samples from two distributions



G(z)

generator distribution

real data distribution 

parameters 

Generator

real 
or 
generated?

Discriminator



From f-divergences to f-GAN
Want to learn more?

Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

evaluation

approximation

learning

Want to learn more?
Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

Want to learn more?Want to learn more?
Nowozin, et al f-GAN: 
Training Generative Neural 
Samplers using Variational 
Divergence Minimization.  
Neurips (2016)



G(z)

generator distribution

real data distribution 

parameters 

Generator

real 
or 
generated?

Discriminator



Challenge: minising a lower bound

lower bound

generative model objective: 
minimise lower bound



Contrast with VAEs

upper bound

generative model objective: 
minimise upper bound



Still works well in practice!

lower bound

generative model objective: 
minimise lower bound

discriminator objective; make 
bound tight



Recipe so far
f-divergence

variational bound

min-max game

f-GAN



From Integral Probability Metrics



Integral probability metrics are distances, not divergences

Divergence Distance



Integral Probability Metrics

Different IPM instatiations given by different family of functions. 



Integral Probability Metrics

IPM

min-max game

GAN



Wasserstein Distance
Want to learn more?Want to learn more?

Arjovsky, et al 
Wasserstein GAN
ICML (2017)



Wasserstein Distance
Want to learn more?Want to learn more?

Arjovsky,, et al Wasserstein GAN
ICML (2017)

Want to learn more?Want to learn more?
Arjovsky, et al 
Wasserstein GAN
ICML (2017)



Estimating the Wasserstein Distance

Try to make D is 1-Lipschitz via gradient penalties, spectral normalization, weight clipping.

Neural network family of functions

Want to learn more?Want to learn more?
Arjovsky,, et al Wasserstein GAN
ICML (2017)

Want to learn more?Want to learn more?
Arjovsky, et al 
Wasserstein GAN
ICML (2017)



G(z)

generator distribution

real data distribution 

parameters 

Generator

real 
or 
generated?

Discriminator



Wasserstein GAN
Want to learn more?

Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)

Model Learning

Try to make D is 1-Lipschitz via gradient penalties, spectral normalization, weight clipping.

Wasserstein GAN

Want to learn more?Want to learn more?
Arjovsky,, et al Wasserstein GAN
ICML (2017)

Want to learn more?Want to learn more?
Arjovsky, et al 
Wasserstein GAN
ICML (2017)



Still minising a lower bound

lower bound

generative model objective: 
minimise lower bound



MMD

 is a RKHS.

Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)

Want to learn more?
Li, et al MMD GAN: Towards 
Deeper Understanding of 
Moment Matching Network.   
Neurips (2017)



MMD

 Choose kernel with learned features (via D)

Want to learn more?
Li, et al MMD GAN: Towards Deeper 
Understanding of Moment Matching 
Network.  
Neural Information Processing 
Systems (2017)

Kernel choice 
(feature learning)

Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)

Want to learn more?
Li, et al MMD GAN: Towards 
Deeper Understanding of 
Moment Matching Network.   
Neurips (2017)



MMD

 Choose kernel with learned features (via D)

Want to learn more?
Li, et al MMD GAN: Towards Deeper 
Understanding of Moment Matching 
Network.  
Neural Information Processing 
Systems (2017)

Model learning
MMD-GAN

Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)

Want to learn more?
Li, et al MMD GAN: Towards 
Deeper Understanding of 
Moment Matching Network.   
Neurips (2017)



Distributional view of GANs

G(z)

generator distribution

real data distribution 

parameters 

Generator Distributional divergences and distances

**Approximated or estimated using a 
learned discriminator.



Distributional view of GANs

G(z)

generator distribution

real data distribution 

parameters 

Generator Distributional divergences and distances

**Approximated or estimated using a 
learned discriminator.



Why train a GAN instead of doing divergence minimization?

- Model type 

Computational Intractability
       Smooth learning signal
       Learned “divergence“



Implicit models and KL divergence

we do not have access 
to the explicit 
distribution p(x).

z G(z)

generated data
latent noise    neural network

  Gz

f-GAN

Want to learn more?
Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

Want to learn more?
Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

Want to learn more?
Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

Want to learn more?Want to learn more?
Nowozin, et al f-GAN: 
Training Generative Neural 
Samplers using Variational 
Divergence Minimization.  
Neurips (2016)



Wasserstein distance & computational intractability

Computationally intractable for complex cases. 

Wasserstein 
GAN

Want to learn more?Want to learn more?
Arjovsky,, et al Wasserstein GAN
ICML (2017)

Want to learn more?Want to learn more?
Arjovsky, et al 
Wasserstein GAN
ICML (2017)



Smooth learning signal

No learning signal from KL/JSD divergence if non-overlapping support between the data and the model.

Want to learn more
Gretton, et al 
Interpretable comparison
of distributions and models. 
Neurips Tutorial (2019)



The density ratio jumps to infinity at the data distribution. 

Smooth learning signal



Smooth learning signal
Want to learn more?

Fedus, et al Many paths to 
equilibrium: GANs do not need to 
decrease a divergence at every 
step . ICLR (2018)

GANs still learn!

Red = data
Blue = model (changes in training)



Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)

Want to learn more
Gretton, et al 
Interpretable comparison
of distributions and models. 
Neurips Tutorial (2019)

true ratio

ratio approximation (smooth)



Smooth approximation of the density ratio does not go to infinity.

Smooth learning signal

MLP approximation



Discriminators as learned “distances”

D provides a learned distance between 
the data and sample distributions, using 
learned neural network features.    



Discriminators as learned “distances”
Want to learn more?

Arora, et al Generalization and 
Equilibrium in Generative 
Adversarial Nets.  
ICML(2017)

We can think of D (the teacher) as learning a “distance” between the data 
and model distribution that can provide useful gradients to the model.



Questions and breathing time!



Generative adversarial networks
and optimisation in two player games



Generative adversarial networks

G(z)

generated data

real data x

parameters: 

parameters: 

Discriminator

Generator
real or generated?



Generative adversarial networks

G(z)

generated data

real data x real or generated?

parameters: 

parameters: 

Discriminator

Generator



Generative Adversarial Networks as zero sum game



The challenge of optimisation in adversarial games

Fully optimising D is not tractable - 
we are thus not doing divergence 
minimisation, but this can also 
introduce optimisation challenges.



Alternating updates

while training:
for i in 1... number_discriminator_updates :

update the discriminator
update the generator using the new discriminator 
parameters



Gradients matter: the original GAN

The generator is doing badly: the discriminator is able to confidently detect generated data as generated. 
But it gets very little learning signal (gradient is 0)!



Discriminator can easily 
distinguish between real 
and generated data

The discriminator has 
to improve (edges)



Gradients matter: non-saturating loss

The generator is doing badly: the discriminator is 
able to confidently detect generated data as 
generated. Strong learning signal!

Want to learn more?
Goodfellow, et al. Generative 
adversarial networks. Neurips 
(2014)



Generative adversarial networks

G(z)

generated data

real data x real or generated?

parameters: 

parameters: 

Discriminator

Generator



The challenge of optimisation in adversarial games - sketch

G: generates only dogs

Data: images of cats and dogs

D: catches up and takes 
simple solution that cats 
are real and dogs are fake

G: catches up and 
generates only cats

D: catches up and takes 
simple solution that cats 
are fake and dogs are real



The challenge of optimisation in adversarial games - sketch

G: generates only dogs

Mode hopping

D: catches up and takes 
simple solution that cats 
are real and dogs are fake

D: catches up and takes 
simple solution that cats 
are fake and dogs are real

G: catches up and 
generates only cats



Mode collapse

GANs can suffer from mode collapse, where 
the generator misses modes from the data 
distribution.



Hyperparameter sensitivity

GANs have been known to suffer from 
hyperparameter sensitivity.

Want to learn more?
Lucic, et al. Are GANs Created 
Equal? A Large-Scale Study. 
Neurips (2018)

Figure from Lucic et al, Are GANs Created Equal? A Large-Scale Study.  



Public    Mitigation strategies which help with the above issues

Optimisation changes:

● large batch sizes
● low momentum

Other changes (optimisation related):
● BatchNorm, Resnets

○ easier to optimise
● spectral normalisation



DiracGAN: a simple example

x

Want to learn more?
Mescheder, et al. Which Training 
Methods for GANs do actually 
Converge?  ICML (2018)



DiracGAN

x

Want to learn more?
Mescheder, et al. Which Training 
Methods for GANs do actually 
Converge?  ICML (2018)



DiracGAN

x

Want to learn more?
Mescheder, et al. Which Training 
Methods for GANs do actually 
Converge?  ICML (2018)



DiracGAN

x
linear discriminator: 
areas of space determined more as real
  

Want to learn more?
Mescheder, et al. Which Training 
Methods for GANs do actually 
Converge?  ICML (2018)



Solution to DiracGAN

x

= 0 = 0

Want to learn more?
Mescheder, et al. Which Training 
Methods for GANs do actually 
Converge?  ICML (2018)



Rotational forces in DiracGAN 

The authors show that many GANs do not converge on this simple problem!

Want to learn more?
Mescheder, et al. Which Training 
Methods for GANs do actually 
Converge?  ICML (2018)



What does convergence mean for games?



Convergence in games

Nash equilibria: a game has reached a Nash equilibrium if no player can perform 
better by moving to another part of the space.



Convergence in GANs: global Nash equilibrium

This does not account for optimisation or neural network capacity.

Looking for the global optimum for the discriminator and generator above leads to:



Convergence in games

Local Nash equilibrium: 

positive semi-definite



Do GANs reach a Nash equilibrium?

Local Nash equilibria might not exist for the GAN game.

The authors find small problems for which given a discriminator and a generator 
as well as a GAN formulation, one can prove a Nash equilibrium does not exist.

Empirically, they also show that many GANs we train do not reach a Nash 
equilibrium.

Want to learn more?
Farina, et al. Do GANs 
always have Nash 
equilibria?  ICML (2020)



Other ways of measuring convergence

Stationarity: important as GD will stop at stationary points.

Other: such as Local minmax, Stackelberg equilibrium.

Locally stable stationary point: 

real part of the eigenvalues of the Hessian > 0



How to ensure GANs reach convergence?

By analysing conditions for convergence, methods to encourage convergence can be 
constructed.

Often they take the form of explicit regularisation.



Examples of ensuring GAN convergence

Common form of regularisers include:

Gradient norm with respect to data                         Gradient norm with respect to parameters 

Connection to Lipschitz smoothness.

Connection to convergence.

Stabilising effects.

Connection to convergence.



Rotational forces in DiracGAN: explicit regularisation 

x
linear discriminator: 
areas of space determined more as real
  

Want to learn more?
Mescheder, et al. Which Training 
Methods for GANs do actually 
Converge?  ICML (2018)



Sometimes we have to change the game in order to ensure convergence.



Are all instabilities inherent in the game or due to gradient descent?



Generative adversarial networks

G(z)

generated data

real data x real or generated?

parameters: 

parameters: 

Critic

Generator



GAN dynamics

(Discriminator)

(Generator)



GAN dynamics

(Discriminator)

(Generator)

discretization

Gradient descent





Discretization error for gradient descent

Discretization error



Discretization error for Runge Kutta 4 updates

Discretization error

Want to learn more?
Qin, et al. Training generative 
adversarial networks by solving 
ordinary differential equations 
Neurips (2020)



Loss of Stability Due to Discretisation

123



Loss of Stability Due to Discretisation

124

Still might need to be 
combined with explicit 
regularisation in practice for 
best performance 

Want to learn more?
Qin, et al. Training generative 
adversarial networks by solving 
ordinary differential equations 
Neurips (2020)



Ways of thinking about GAN optimisation

Discrete view Continuous view



Ways of thinking about GAN optimisation

Discrete view Continuous view

● analyse updates as used in practice 
(though using updates such as Adam is 
more complex)

● directly accounts for the learning rate

● analyse the underlying continuous system
● tends to be easier analytically 
● the original ODEs do not account for 

learning rates
○ so there can be a gap between 

continuous analysis results and what 
happens in practice



Incorporating the game structure into the 
optimisation procedure 

Account for the game structure when adapting other 
optimisation algorithms or creating new ones.



Does a (local) Nash equilibrium exist for this GAN game?
     (if it does, it will be locally attractive in continuous time**)

Do our discrete optimisation 
methods reach this equilibrium?

** not the case for general 
games, but true for most GANs 



Optimisation in GANs

Optimisation is an important aspect of GAN training:

● big improvements in GAN results have come from improving optimisation
● defining convergence is not easy 
● there is a difference between understanding what the discrete updates do and what the 

underlying ODE system does

GANs also provide a useful testing ground for the intersection between two-player games 
and deep learning.



How can we think about GANs?



Distributional view Games view

How to construct objectives which ensure 
the model can learn the data distribution.

How to construct optimisation methods 
which ensure convergence.



So far



A more accurate picture



divergence/distance

approximation or estimation using a 
learned discriminator

player objectives

optimisation

Distributional view Games view



divergence/distance

approximation or estimation using a 
learned critic

player objectives

optimisation

Distributional view Games view



divergence/distance

approximation or estimation using a 
learned critic

player objectives

optimisation



Questions to ask

Reaching a local Nash equilibrium does not tell us we have learned a good model of 
the distribution.

What are the connections between optimisation convergence and the 
quality of the learned distribution?



Questions to ask

How can we find the trade-off between optimisation stability and 
distributional learning performance?

Multiple regularisation methods (explicit gradient regularisation, gradient penalties, 
dropout) can increase stability but decrease performance of the model.



Local minima are less of an issue than originally thought. 

Connection between optimisation and performance. 

Using the implicit regularisation work to make the connection between optimisation and 
generalisation.

The cohesive view of supervised learning



Can the same be done for GANs?

Theoretical analysis might be challenging but perhaps we can 
start with empirical studies.



Challenges

No clear evaluation metric for how well the model is learning the 
data distribution.

Many more factors to account for: two players with two 
architectures and two different optimisation schedules.



What do GANs teach us

● We can estimate different distributional divergences and 
distances using deep learning and use them to train implicit 
generative models.

● GANs are a useful testing ground for optimisation ideas for 
games.



Thank you!



This talk focused on obtaining GAN losses from distributional distances and 
divergences. There are other ways to change GAN losses, through regularisation 
or other approaches, including:

● Gradient penalties wrt to inputs 
○ Improved training for Wasserstein GAN, Gulrajani et al, Neurips, 2017
○ Which methods of GANs actually converge? Mescheder et al, ICML 2018

● Gradient regularization wrt to parameters
○ The numerics of GANs, Mescheder et al, Neurips, 2017
○ The Mechanics of n-Player Differentiable Games, Balduzzi et al, ICML 2018

● Entropy regularization
○ Prescribed Generative Adversarial Networks, Dieng et al, 2019

● and many others...



References - Distributional learning

GANs introduced based on divergences and distances:

Generative adversarial nets, Goodfellow et al,  Neurips 2014

f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization,  Nowozin, et al, Neurips (2016)

Wasserstein GAN, Arjovsky, et al, ICML 2017

MMD GAN: Towards Deeper Understanding of Moment Matching Network, Li, et al, Neurips 2017

Improved Training of Wasserstein GANs, Gulrajani et al, Neurips 2017

Demystifying mmd gans, Bińkowski et al, ICL 2018

Learning in implicit generative models, Mohamed, et al arxiv (2016)



Which divergence and distance to use?

Towards Principled Methods for Training Generative Adversarial Networks, Arjovsky et al, ICLR 2017

Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step, Fedus et al, ICLR 2018

References - Distributional learning



References - Distributional learning

How to scale other distances and divergences to large scale problems?

Generative Modeling using the Sliced Wasserstein Distance, Deshpande et al, CVPR 2018

Distributional Sliced-Wasserstein and Applications to Generative Modeling, ICLR 2021

Learning Implicit Generative Models with the Method of Learned Moments, Ravuri et al, ICML 2018



Architectures and model regularisation are a core ingredient of GAN training:

● Self attention
○ Self-Attention Generative Adversarial Networks, Zhang et al, ICML 2019

● Discriminator regularisation
○ Spectral Normalization for Generative Adversarial Networks, Miyato et al, 

ICLR 2018
● BatchNormalisation is often used for the generator.



Optimisation in games and GANs

Understanding the effect of discretisation

ODE-GAN: Training Generative Adversarial Networks by Solving Ordinary Differential Equations, Qin et 
al, Neurips 2020

Implicit competitive regularization in gans, Schäfer et al, ICML 2021

Discretization Drift in Two-Player Games, Rosca et al, ICML 2021

The limit points of (optimistic) gradient descent in min-max optimization, Daskalakis et al, Neurips 2018



References - games

What can be done to encourage convergence?

The Numerics of GANs, Mescheder et al, Neurips 2017

Which Training Methods for GANs do actually Converge, Mescheder et al, ICML 2018

ODE-GAN: Training Generative Adversarial Networks by Solving Ordinary Differential Equations, Qin et 
al, Neurips 2020

Gradient descent GAN optimization is locally stable, Nagarajan et al, Neurips 2017

The Mechanics of n-Player Differentiable Games, Balduzzi et al, ICML 2018

On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach, Wang et al, ICLR 2020



Incorporating the game structure into the 
optimisation procedure 

Account for the game structure when adapting other 
optimisation algorithms or creating new ones.



References - games

How can the game structure be incorporated into the optimisation 
procedure?

Unrolled Generative Adversarial Networks, Metz et al, ICLR 2017

Taming GANs with Lookahead-Minmax, Chavdarova et al, ICLR 2021

Reducing Noise in GAN Training with Variance Reduced Extragradient, Chavdarova et al, 
Neurips 2019

Competitive Gradient Descent, Schäfer et al, Neurips 2019

On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach, Wang et al, ICLR 
2020



Public    Mitigation strategies which help with the above issues

Optimisation changes:

● large batch sizes
● low momentum

Other changes (optimisation related):
● BatchNorm
● Resnets

○ easier to optimise
● spectral normalisation

○ this has been connected to 
optimisation (both in GANs and more 
widely, in RL)



Public    Mitigation strategies which help with the above issues

● Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et 
al, ICLR 2019

● Spectral Normalization for Generative Adversarial Networks, Miyato et al, 
ICLR 2018

● Unsupervised Representation Learning with Deep Convolutional Generative 
Adversarial Networks, Radford et al, ICLR 2016

● Improved Training of Wasserstein GANs, Gulrajani et al, Neurips 2018
● Self-Attention Generative Adversarial Networks, Zhang et al, ICML 2019



Examples of ensuring GAN convergence

Common form of regularisers include:

Gradient norm with respect to data                         Gradient norm with respect to parameters 

Connection to Lipschitz smoothness.

Connection to convergence.

Stabilising effects.

Connection to convergence.



Examples of ensuring GAN convergence

● Gradient penalties with respect to input
○ Which Training Methods for GANs do actually Converge, Mescheder et al, ICML 2018
○ On gradient regularizers for MMD GANs, Arbel et al, Neurips 2018

● Gradient regularison with respect to parameters
○ The Numerics of GANs, Mescheder et al, Neurips 2017
○ Gradient descent GAN optimization is locally stable, Nagarajan et al, Neurips 2017
○ The Mechanics of n-Player Differentiable Games, Balduzzi et al, ICML 2018



Evaluating GANs:

● Inception Score
○ Improved Techniques for Training GANs, Salimans et al, Neurips 2016

● Frechet Inception Distance
○ GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash 

Equilibrium, Heusel et al, Neurips 2017 
● Kernel Inception Distance

○ Demystifying MMD GANs, Binkowski et al, ICLR 2018
● Precision and recall metrics

○ Improved Precision and Recall Metric for Assessing Generative Models, s 
Kynkäänniemi et al, Neurips 2019

● Training classifiers with data generated from GANs
○ Classification Accuracy Score for Conditional Generative Models, Ravuri et 

al, Neurips 2019



And much more...

You can find more related work at conectedpapers.com

http://connectedpapers.com


Thank you


