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This is a very broad overview of the field, there are many other interesting works 
that cannot be covered due to time constraints. If I missed anything, this is not a 
statement about the value of that respective work. 

There are slides with additional references at the end of the talk.

Disclaimer
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Gradient descent:

parameter dimension: D
h denotes the learning rate throughout this talk.
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A continuous time perspective

Negative gradient flow (NGF):



Mihaela Rosca, 2024

Continuous dynamics

Euler integration

Discrete dynamics

Gradient descent!
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Continuous dynamics

Euler integration

Discrete dynamics
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Challenge: discretisation
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Challenge: discretisation

For quadratic functions like this one, we know when instability/divergence 
happen. For NNs, it’s more complex. More about this later! 
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Next step: momentum

Intuition: 
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Next step: momentum

Intuition: 

 We can rewrite this update as:  
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Next step: momentum
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Next step: momentum as an ODE

Classical view: second 
order ODEs needed!

Different discretisation: speeding up going 
into the direction of the negative gradient.
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Next step: signs of the gradient is what matters
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Next step: signs of the gradient is what matters
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Going to discrete space: Rprop

SGD:
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Next step: Rmsprop

Rprop + moving averages:
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Next step: Adam
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Summary

● It is useful to think what happens in continuous time to derive discrete time optimiser
● Sign of the gradient is that matters, but we often smooth over multiple steps
● Adam is a staple of deep learning optimisation, and hypers often ignored matter a lot



Mihaela Rosca, 2024

Deep learning 
optimisation
(with a continuous time flavour)
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Deep learning optimisation

RHS image from: Visualizing the Loss Landscape of Neural Nets, Li et al, Neurips 2018
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Deep learning optimisation

● High dimensional
● Need a lot of data: SGD
● Exhibits edge of stability phenomena
● Generalises
● Exhibits implicit regularisation phenomena
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Deep learning optimisation

Questions to answer: 

● why does it work so well?
● why are saddle points not a bigger issue?
● why do deep learning local optima generalise?
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Deep learning optimisation

Concerns about saddle points: 

● gradient descent iterations stop when the gradient is zero, but that does not 
mean we are at a local minima (where all Hessian eigenvalues are >=0).

● concern around high dimensionality:  “Intuitively, in high dimensions, the chance that 
all the directions around a critical point lead upward (positive curvature) is exponentially 
small w.r.t. the number of dimensions” [Dauphin et al, Identifying and attacking the saddle 
point problem in high-dimensional non-convex optimization, 2014]

● Empirically seems less of a problem in practice
○ noise from stochastic gradient descent also seems to help
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Generalisation

Why do deep learning models generalise?

The goal of optimisation: minimise the training loss.

The overarching goal of machine learning: generalise beyond training data.

Optimisers that are good at the former need not be good at the latter.
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Flatness

Convergence to flat minima has been connected to generalisation, though this is 
debated. Some definitions of flatness:

● gradient norms
● Hessian eigenvalues or related measures

Note: due to reparametrization properties of NNs, we can construct equivalent 
neural networks with hugely varying sharpness properties[1]. 

[1] Sharp Minima Can Generalize For Deep Nets, Dhin et al, 2017
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Flatness

Convergence to flat minima has been connected to generalisation, though this is 
debated. Some definitions of flatness:

● gradient norms
● Hessian eigenvalues or related measures

Note: due to reparametrization properties of NNs, we can construct equivalent 
neural networks with hugely varying sharpness properties[1]. 

But, are these equally likely to be preferred by an optimisation procedure?

[1] Sharp Minima Can Generalize For Deep Nets, Dhin et al, 2017
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Flatness changes with model architecture

Figure from: Visualizing the Loss Landscape of Neural Nets, Li et al, Neurips 2018
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Flatness via optimisation changes
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Let’s start looking into some of these!
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Remember this?
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Discretisation drift

Discretization drift
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Modified loss functions

Minimises original loss function E.

Minimises modified loss function. 
Closer to what gradient descent does. 
We can find out which losses are implicit 
minimised when we train models with gradient 
descent.
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Discretization drift

Discretization drift for Euler updates
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Backward error analysis

Discretization drift
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BEA proof visualisation
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BEA proof visualisation
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BEA proof visualisation

IGR flow
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BEA proof visualisation

IGR flow

=0
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Implicit gradient regularisation

IGR flow

NGF

The NGF and IGR flow have errors of              and               respectively. 
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IGR flow

NGF

The NGF and IGR flow have errors of              and               respectively. 

From modified ODEs to modified losses:
vector fields as negative gradients
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Modified loss functions

Minimises E.

Minimises 
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Implicit gradient regularisation

Flatness penalty: implicit in when using gradient descent.

Strength is proportional to the learning rate.
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Implicit gradient 
regularisation aids 
generalization.

Implicit gradient regularisation
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Summary

● We can use continuous time tools to find implicit regularisers of optimisers

● Our optimisers induce a bias in our optimisation procedures

● This bias can aid generalisation
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Stochasticity

Stochastic gradient descent was introduced to:

● To deal with large datasets

● To avoid the slow training that often happens with full batch GD

○ early in training you do not need a full gradient update to learn, you can learn much quicker 
with smaller batches
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What has happened since?

SGD is a main workhorse of deep learning and has been attributed with:

● improved generalisation performance

● leading to flatter minima 

● avoiding bad local minima and saddle points

Note: There is a critical mini-batch size  after which SGD behaves similarly to 
full-batch gradient descent (GD) and converges slowly.
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Stochasticity and implicit regularisation

Can we use some continuous-time tools to understand the effect of SGD?

Turns out we can, at least in expectation...
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Stochasticity and implicit regularisation

On the Origin of Implicit Regularization in Stochastic Gradient Descent, Smith et al, 2021

For random shuffling SGD: 

The effect of implicit regularization is stronger for smaller batch sizes. 
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Is stochasticity then required to obtain good results?

Geiping et al, 2022 take the implicit regularisation from SGD and to full batch 
gradient descent. Their hypothesis:

“We can modify and tune optimization hyperparameters for GD 
and also add an explicit regularizer in order to recover SGD’s 
generalization performance without injecting any noise into 
training.”

Stochastic Training is Not Necessary for Generalization, Geiping et al, 2022



Mihaela Rosca, 2024

Is stochasticity then required to obtain good results?
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Summary

● There is an implicit bias coming from stochasticity in gradient descent.

● SGD can have positive regularisation effect that can help with escaping 
saddle points.

● We can recover the performance of SGD with full-batch GD with explicit 
regularisation.



Mihaela Rosca, 2024

Edge of stability results in NNs

The edge of stability phenomenon in deep learning has been coined by Cohen et al, 2021.
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Remember this?
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Edge of stability results in NNs

● Originally seen for full batch gradient descent, but seen been expanded to SGD 
and adaptive optimisers
○ e.g. Adaptive Gradient Methods at the Edge of Stability by Cohen et al.

● Questions:
○ why does it not diverge, when second order models do
○ implicit regularisation from higher order terms seems to have an effect

■ Self-stabilization: The implicit bias of gradient descent at the edge of stability. Damian et al. 
2022

■ On discretisation drift and smoothness regularisation in neural network training, Rosca, 2023
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The Principal Flow

Properties of the Principal Flow (PF):

- is exact for quadratic losses
- generalisation of the NGF 
- stability analysis correctly predicts that gradient descent is not always 

attracted to local minima
- obtained using BEA

Hessian              eigenvalues and eigenvectors
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Stability coefficient is complex, 
with  positive real part.

The Principal Flow: exact for quadratic case

Stability coefficient is 
real and negative. 

Stability coefficient is complex, 
with negative real part.
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The Principal Flow and edge of stability
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Summary

● Edge of stability results show that there is a significant role of quadratic dynamics 
in neural network training, but these cannot fully explain the behaviour we see, 
and higher order terms matter.
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But Mihaela, I just 
want to train 
generative models!
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A lot of progress in generative models has been made not only due to changes in  
models and objectives, but a lot due to optimisation progress.

Let’s discuss a few case studies and provide historical context.

Point of view
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Generative Adversarial Nets

How to answer “real or generated?” 

Based on divergences (though not exact!)

● Original GAN: JSD
● Wasserstein GAN
● MMD-GAN
● f-GANs

○ f-divergences like the KL and JSD 

● many more works! 
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Generative Adversarial Nets

Goodfellow, et al. Generative adversarial 
networks. NIPS (2014)

Karras et al. A Style-Based Generator 
Architecture for Generative 
Adversarial Networks  CVPR (2019)

?
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Generative Adversarial Nets

A lot of progress in GAN samples was made with: 

● changes to architecture
● increasing the importance of conditioning
● optimization
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Generative Adversarial Nets: Optimisation

Tricks to scale GANs:

● optimization unstable
○ large batch sizes help
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Generative Adversarial Nets: Optimisation

Tricks to scale GANs:

● Adam:
○ important
○ beta1 (momentum) low: 0 or 0.5

Adam: A Method for Stochastic Optimization,  Kingma et al,  ICLR 2015
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Generative Adversarial Nets: Optimization

Tricks to scale GANs:

● Use Spectral Normalization
○ decreases learning rate sensitivity
○ note: model normalization technique but affects optimization 

■ (not only for GANs, also in RL)

higher is better

Image credit: Spectral Normalization for Generative Adversarial Networks,  Miyato et al,  ICLR 2018

different 
hyperparameter 

settings
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Generative Adversarial Nets: Optimisation

Tricks to scale GANs:

● Adam:
○ important
○ beta1 (momentum) low: 0 or 0.5

still, performance degrades later in training!

GAN training
Higher is better
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Generative Adversarial Nets: Optimisation

Understanding optimization in generative models can be theoretical!

Observed problem: 

gradient descent and its variants (Adam) struggle to train GANs.

Idea: 

use continuous time (ODEs) to understand the training dynamics of the model!
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ODE-GAN

Theory: 

Continuous dynamics converge to a local Nash 
equilibrium.

Practical implications: 

Do not use gradient descent/Adam, but higher 
order integrators (RK4) to better follow 
continuous dynamics.

Image credit: Training Generative Adversarial Networks by Solving Ordinary Differential Equations,  Qin et al,  Neurips 2020
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Discretisation Drift in Two-Player games

Question: 

What makes gradient descent be 
unstable, when its continuous 
counterpart is not?

Quantify mathematically and use it to 
improve the performance of SGD in 
GANs!

Image credit: Discretization Drift in Two-Player games,  Rosca et al,  ICML 2021



Mihaela Rosca, 2024

Diffusion models

Image credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

You can think about diffusion models as a particular formulation of hierarchical 
VAEs (though latents have same dimension as data)!

add Gaussian noise

model path

inference path



Mihaela Rosca, 2024

Diffusion models

Image credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

add Gaussian noise

model path

inference path
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Diffusion models

Image credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

add Gaussian noise

model path

inference path
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Diffusion models - optimisation

Algorithm credit: Denoising Diffusion Probabilistic Models, Ho et al, Neurips 2020

regression loss to unit gaussian sample
dense learning signal due to specific 
parametrisation of Gaussian mean
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Aside: 

Continuous-time is also crucial for understanding diffusion!

So is understanding discretisation errors!
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Maximum likelihood text LLMs

Challenge: how to stabilize transformers at larger scale (entropy collapse of 
attention layers).

Unlike other models, transformers cannot easily by trained with SGD with 
momentum, and need Adam. Learning rate schedules are also very important.

Early evidence suggests this could also be due to curvature properties!
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Large language models

We train smaller models for which we can do hyperparameter sweeps, then we 
ask: “how should I train a bigger model?”
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μ-p: Maximal Update Parametrization

If you parametrise a network in a certain way, hyperparameters can be easier to 
transfer: 

Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer, 
Yang et al, 2022
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μ-p:  Maximal Update Parametrization

What can transfer:

Key insight: think about the infinite width limit to derive 
theoretical insights, push empirical results beyond that.
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Summary

Optimisation has been important for generative models progress, and still is a key 
component for driving large model success.
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Conclusion

We have seen how to derive optimisers, and how to reason about their implicit 
regularisation effects.

Optimisation is a key component of the success of deep learning!

Think of it when training your models!
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Thanks!
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