The power and promise of generative models

Mihaela Rosca @elaClaudia

Generative models are a core building block of intelligent systems.

What do intelligent systems need?

- Generate new data
- Imagine possible futures & have a model of the world
- Translate between data modalities
- Learn useful representations
- Complete missing data

Generate new data

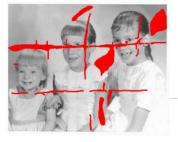
What do intelligent systems need?

Royour was I did too jest of this forget That I must I should be report of tale Decost we are bewarved:'d: yet my fearful scope From whence the duty I may need their course, Which thou wert sorry for my party was to show Forthwith Edward for what stout King Richard death!

https://arxiv.org/abs/1710.10196 https://arxiv.org/pdf/1609.03499.pdf https://arxiv.org/abs/1308.0850

Complete missing data

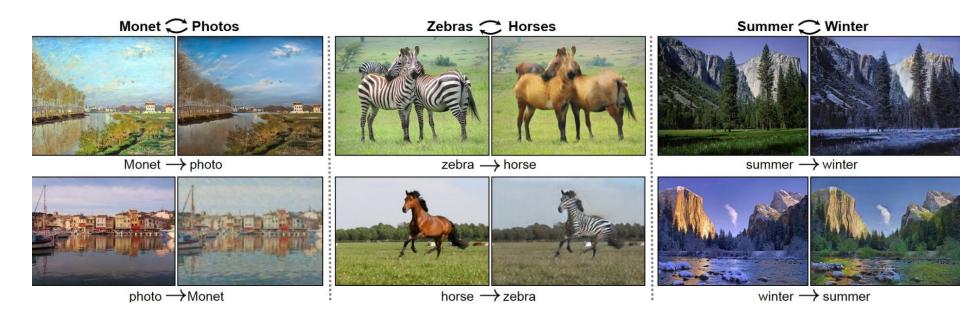
What do intelligent systems need?



http://math.univ-lyon1.fr/homes-www/masnou/fichiers/publications/survey.pdf http://www.dtic.upf.edu/~mbertalmio/bertalmi.pdf

Translate between data modalities

What do intelligent systems need?



CycleGAN: https://arxiv.org/abs/1703.10593

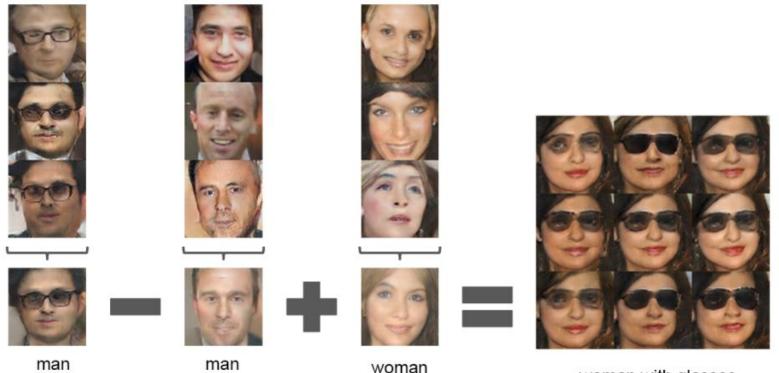
Learn useful representations

What do intelligent systems need?

Leverage learned structure for better classification performance on labelled data.

Learn useful representations

What do intelligent systems need?



without glasses

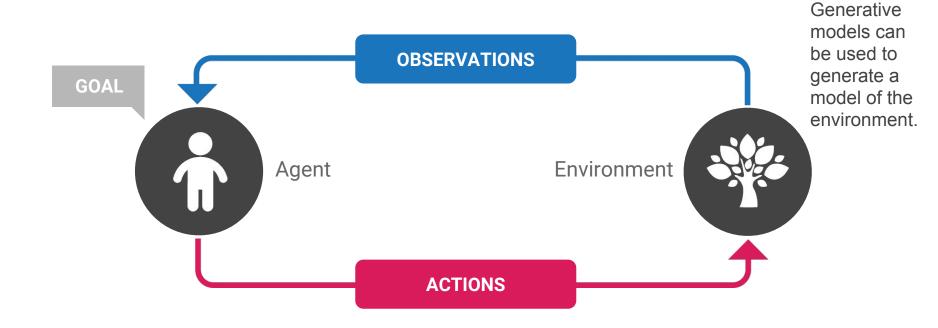
without glasses

with glasses

woman with glasses https://arxiv.org/pdf/1511.06434.pdf

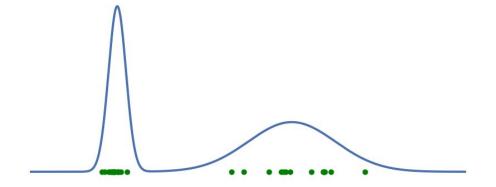
Have a model of the world

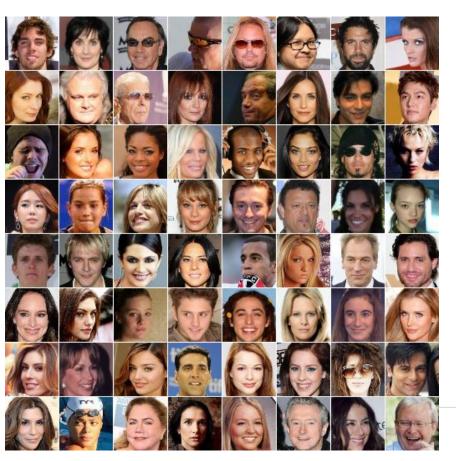
What do intelligent systems need?



How do generative models allow us to build intelligent systems?

Learn a model of the true underlying data distribution $p^*(x)$ from samples





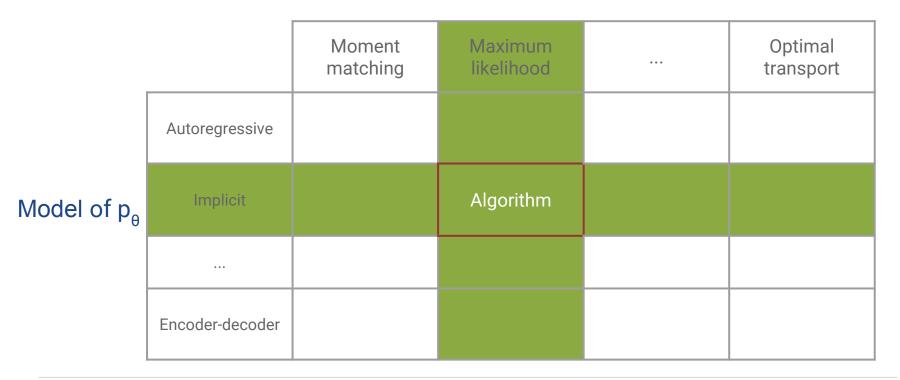
Find \textbf{p}_{θ} to minimize the distance between \textbf{p}_{θ} and \textbf{p}^{*}

- Model of p_θ
 - you can leverage prior knowledge of the problem
 - what kind of data do you have?
 - what kind of process generated the data?
- The learning principle used to minimize the distance between p_{ρ} and p^*

Generative model algorithm

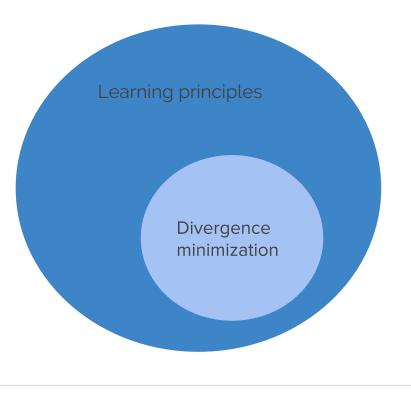
learning principle + model

Learning principle



Learning principles

Divergence minimization as a learning principle



Other learning principles: moment matching optimal transport

Divergences minimized

Divergence minimization for generative model learning

Aim: Minimize a divergence between p_{θ} and p^*

Divergence minimized

Requirements

- Easy to compute
- Needs only samples from p*
- Has an efficient unbiased gradient estimator

Divergences minimized

Common divergence choices

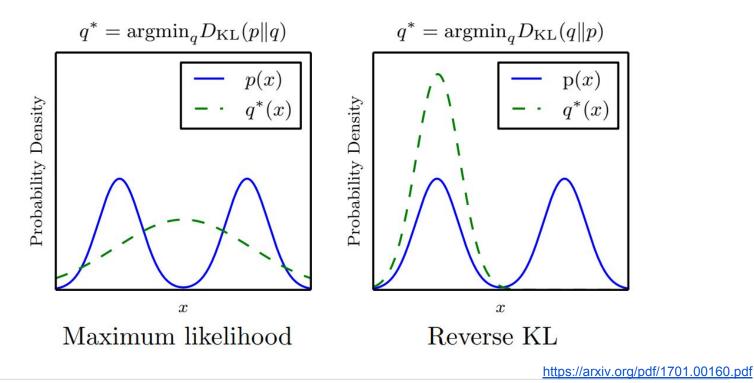
- KL divergence (most common)
 results in *maximum likelihood* learning
- Reverse KL divergence
- Jensen Shannon

Minimizing the KL divergence between p_{θ} and $p^* \Rightarrow$ maximum likelihood learning: argmax_{θ} $\mathcal{E}_{x \sim p^*} \log p_{\theta}(x)$

Intuition: find the model which gives highest likelihood to the data.

Trade-offs for a fixed model choice

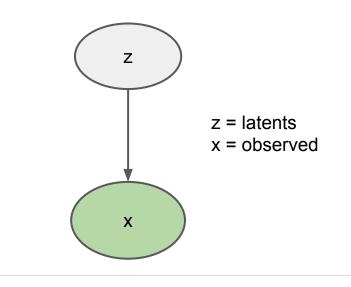
KL vs Reverse KL model fit



Graphical structure

Directly model $p_{\theta}(x)$

Leverage underlying data structure in generative process.



Distribution choice

- Categorical
- Gaussian
- Bernoulli
- do not directly model $p_{\theta}(x)$

Embedding priors in your model

Leverage data knowledge:

- convolutional models for images
- recurrent models for text and sound
- appropriate priors for latent variables

LDA

Embedding priors in your model

"Arts" "Budgets" "Children" "Education"

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

Algorithms

Autoregressive maximum likelihood models

PixelCNN, PixelRNN, WaveNet

Autoregressive maximum likelihood models

Principle: maximum likelihood

Model: Autoregressive model with no latent variables

 $p_{\alpha}(x) = \prod_{i} p_{\alpha}(x_{i} | x_{1}, x_{2}, ..., x_{i-1})$

PixelCNN, PixelRNN, WaveNet

Autoregressive maximum likelihood models

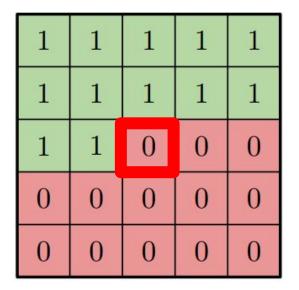
$$p_{\theta}(x) = \prod_{i} p_{\theta}(x_{i} | x_{1}, x_{2}...x_{i-1})$$

Modelled with a convolutional or recurrent network

https://arxiv.org/pdf/1601.06759.pdf https://arxiv.org/abs/1606.05328 https://deepmind.com/blog/wavenet-generative-model-raw-audio/

PixelCNN, PixelRNN, WaveNet

Sampling from autoregressive maximum likelihood models



O(data_dim) sampling cost.

https://arxiv.org/pdf/1601.06759.pdf https://arxiv.org/abs/1606.05328 https://deepmind.com/blog/wavenet-generative-model-raw-auglo/

Autoregressive maximum likelihood models

Pros:

- powerful state of the art for many applications
- explicit, exact density models

Cons:

• High sampling cost

Maximum likelihood for latent variable models

Principle: maximum likelihood **Model**: Encoder-decoder model with latent variables

$$\mathbb{E}_{p^*(\mathbf{x})}\log p_{\boldsymbol{\theta}}(\mathbf{x})$$

Mihaela Rosca

Ζ

Х

Maximum likelihood for latent variable models

Latent variables introduce an intractable integral:

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log \int p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

Х

Ζ

Maximum likelihood for latent variable models

A solution is to introduce a variational distribution *q*:

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log \int p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z} \ge \mathbb{E}_{q_{\eta}(\mathbf{z}|\mathbf{x})}[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - \mathrm{KL}[q_{\eta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})]$$

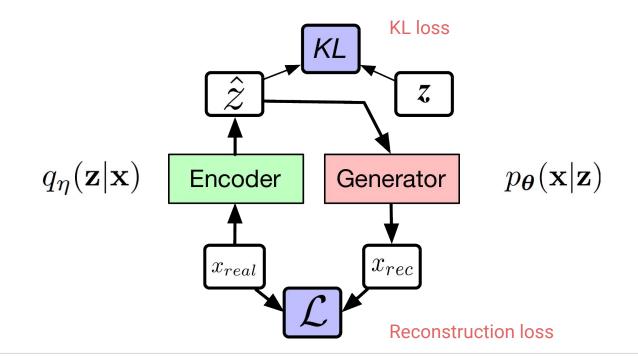
Maximum likelihood for latent variable models

A solution is to introduce a variational distribution *q*:

Maximum likelihood for latent variable models

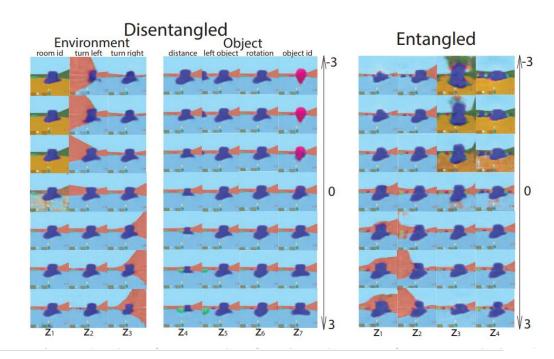
A solution is to introduce a variational distribution *q*:

Latent approximate maximum likelihood models



Pros:

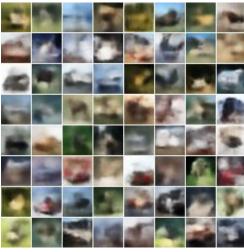
• inference



https://openreview.net/forum?id=Sy2fzU9gl

Cons:

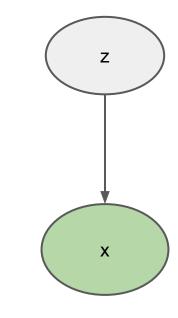
- Approximate density estimation
- Sensitive to choice of posterior distribution
- Low quality samples

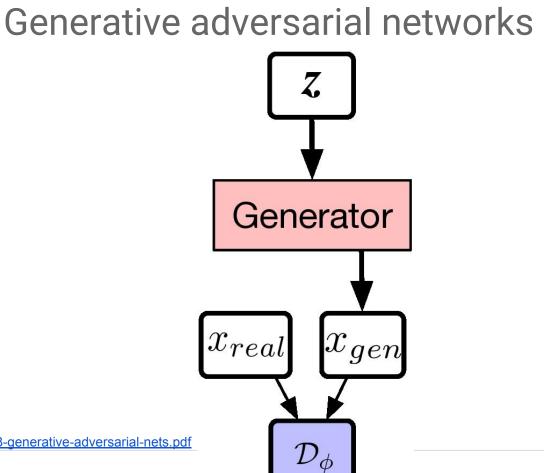


Latent variable models without maximum likelihood

- Minimize distance between p_{θ} and p^*
 - provided by another model "discriminator"
 - connections to Jensen Shannon and Earth Mover's

- How they model p_{θ}
 - model the generative process: sampling
 - no direct access to p_{θ}





The model objective

D is a classifier trained with cross entropy loss.

$$J^{(D)}(\boldsymbol{\theta}^{(D)}, \boldsymbol{\theta}^{(G)}) = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(z)\right)\right).$$

Maximize probability
that the data is real Maximize probability
that the samples are fake

Connection to Jensen Shannon divergence

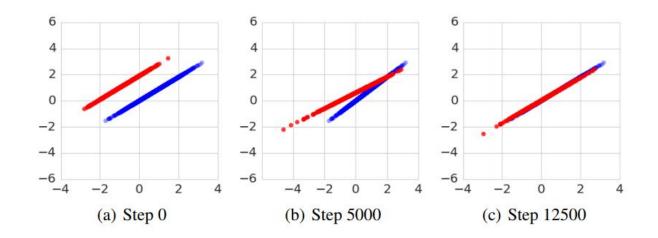
If D is an optimal discriminator:

G is minimizing JSD(p_{θ}, p^*)

Connection to Jensen Shannon divergence

In practice:

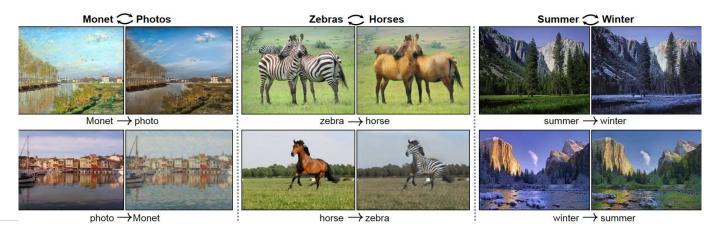
- simultaneous gradient descent
- finite data



https://arxiv.org/abs/1710.08446

Pros:

- Generate compelling samples
- Enable learning from unpaired data



Cons:

- Instability in training
- No explicit density
- No inference

Why: Combine the pros for VAEs and GANs.

What: variational inference and implicit models.

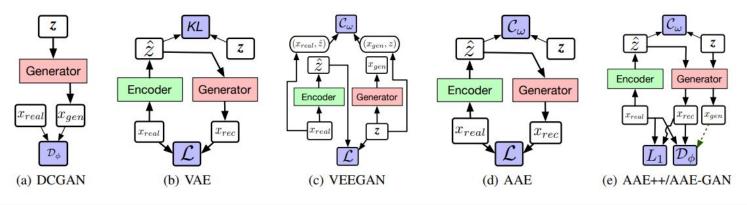
https://arxiv.org/abs/1511.05644 https://arxiv.org/abs/1706.04987 https://arxiv.org/abs/1705.07761

$$\log p_{\theta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z} \geq \mathbb{E}_{q_{\eta}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathrm{KL}[q_{\eta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})]$$

$$(\mathbf{x}|\mathbf{z}|\mathbf{z}) = \frac{1}{\sqrt{1-1}} + \frac{\sqrt$$

We performed an extensive study and concluded:

- Use VAEs for inference
- GANs for generation

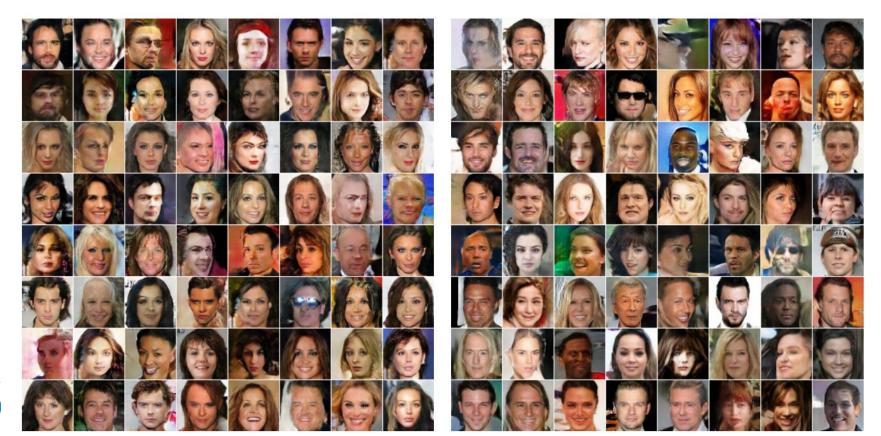


https://arxiv.org/abs/1802.06847 Mihaela Rosca

Evaluating generative models

Evaluation of generative models

How can we compare generative models?



Evaluation of generative models

No evaluation metric is able to capture all desired properties.

- sample quality
- generalization
- representation learning

Evaluation of generative models

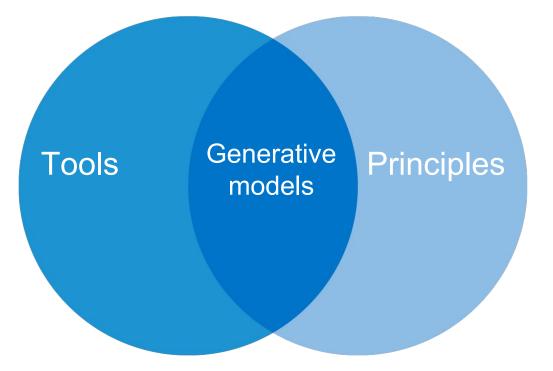
Use application specific metrics

No evaluation metric is able to capture all desired properties.

Evaluate performance based on the end goal:

- semi supervised learning: classification accuracy
- reinforcement learning: total agent reward
- data generation (eg: text to speech): human (user) evaluation

I do not work on generative models - why should I care?



Generative models as tool

- learning with scarce labelled data
- estimating uncertainty
- eliminating outliers
- completing missing data
- generating data
- building useful (disentangled) representations

Generative models as a learning principles

Modelling probability distributions is at the core of machine learning.

Classification

Maximum likelihood

$$\mathbb{E}_{x,y \sim p^*} p_{\theta}(x,y)$$
$$= \mathbb{E}_{x,y \sim p^*} p_{\theta}(y|x)p(x)$$
$$\sim \mathbb{E}_{x,y \sim p^*} p_{\theta}(y|x)$$

As inference

$$\log p(R) = \log \int p(R,\tau) d\tau \ge \mathbb{E}_{q(\tau)} \log p(R|\tau) + KL(q(\tau)||p(\tau))$$

$q(\tau)$ is the variational distribution and encodes the policy.

Reinforcement learning

As inference

$$\log p(R) = \log \int p(R,\tau) d\tau \ge \mathbb{E}_{q(\tau)} \log p(R|\tau) + KL(q(\tau)||p(\tau))$$

This is entropy regularized policy gradient.

Choose the model that gives the shortest description of data

Goal: Find a code with which the receiver can reconstruct the original data

http://www.helsinki.fi/~ahonkela/papers/infview.pdf

Compression

$$L_{q(\boldsymbol{\theta})}(\boldsymbol{X}) = \sum_{\boldsymbol{\theta}} q(\boldsymbol{\theta}) \log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{X}, \boldsymbol{\theta} | \mathcal{H})}$$
$$= \sum_{\boldsymbol{\theta}} q(\boldsymbol{\theta}) \log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta} | \boldsymbol{X}, \mathcal{H})} - \log p(\boldsymbol{X} | \mathcal{H})$$
$$= D(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta} | \boldsymbol{X}, \mathcal{H})) - \log p(\boldsymbol{X} | \mathcal{H})$$

http://www.helsinki.fi/~ahonkela/papers/infview.pdf

The principles behind generative models can be applied everywhere in ML.

THANK YOU

Credits

Shakir Mohamed, Balaji Lakshminarayanan

Additional Credits