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Generative models are a core 
building block of intelligent systems.
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What do intelligent systems need?

● Generate new data
● Imagine possible futures & have a model of the world
● Translate between data modalities
● Learn useful representations
● Complete missing data
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Generate new data
What do intelligent systems need?

Royour was I did too jest of this forget
That I must I should be report of tale
Decost we are bewarved:'d: yet my fearful scope
From whence the duty I may need their course,
Which thou wert sorry for my party was to show
Forthwith Edward for what stout King Richard death!

https://arxiv.org/abs/1710.10196
https://arxiv.org/pdf/1609.03499.pdf
https://arxiv.org/abs/1308.0850

https://arxiv.org/abs/1710.10196
https://arxiv.org/pdf/1609.03499.pdf
https://arxiv.org/abs/1308.0850
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Complete missing data
What do intelligent systems need?

http://math.univ-lyon1.fr/homes-www/masnou/fichiers/publications/survey.pdf
http://www.dtic.upf.edu/~mbertalmio/bertalmi.pdf

http://math.univ-lyon1.fr/homes-www/masnou/fichiers/publications/survey.pdf
http://www.dtic.upf.edu/~mbertalmio/bertalmi.pdf
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Translate between data modalities
What do intelligent systems need?

CycleGAN: https://arxiv.org/abs/1703.10593

https://arxiv.org/abs/1703.10593
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Leverage learned structure for 
better classification 
performance on labelled data. 

Learn useful representations
What do intelligent systems need?
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Learn useful representations
What do intelligent systems need?

https://arxiv.org/pdf/1511.06434.pdf

https://arxiv.org/pdf/1511.06434.pdf
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Have a model of the world
What do intelligent systems need?

GOAL

Agent Environment

OBSERVATIONS

ACTIONS

Generative 
models can 
be used to 
generate a 
model of the 
environment.



How do generative models allow us 
to build intelligent systems?
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The goal of generative models

Learn a model of the true underlying data distribution 
p*(x) from samples 

x1, x2 ... xn
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The goal of generative models



Mihaela Rosca

The goal of generative models
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The goal of generative models
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Find pθ to minimize the distance between pθ and p*

The goal of generative models
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Finding pθ
Choices in generative models

● Model of pθ 
○ you can leverage prior knowledge of the problem

■ what kind of data do you have?
■ what kind of process generated the data?

● The learning principle used to minimize the distance between pθ and p*
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Generative model algorithm 
=

 learning principle + model 
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Moment 
matching

Maximum 
likelihood ... Optimal 

transport

Autoregressive

Implicit Algorithm

...

Encoder-decoder

Model of pθ 

Learning principle



Learning principles 
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Divergence minimization as a learning principle

Learning principles

Other learning principles:
moment matching
optimal transport
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Divergences minimized
Divergence minimization for generative model learning

Aim: Minimize a divergence between pθ and p*
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Divergence minimized
Requirements

● Easy to compute
● Needs only samples from p*
● Has an efficient unbiased gradient estimator
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Divergences minimized
Common divergence choices

● KL divergence (most common)
○ results in maximum likelihood learning

● Reverse KL divergence
● Jensen Shannon
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KL divergence
Maximum likelihood

Minimizing the KL divergence between pθ and p* ⇛ maximum likelihood learning:

 

Intuition: find the model which gives highest likelihood to the data.

argmaxθ Ex ~p* log pθ(x) 
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Trade-offs for a fixed model choice
KL vs Reverse KL model fit

https://arxiv.org/pdf/1701.00160.pdf

https://arxiv.org/pdf/1701.00160.pdf


Model choices
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Model choices
Graphical structure

Leverage underlying data 
structure in generative process.

z

x

z = latents
x = observed

Directly model pθ(x) 
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Model choices
Distribution choice

pθ(x) 

● Categorical
● Gaussian
● Bernoulli
● do not directly model pθ(x) 
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Model choices
Embedding priors in your model

Leverage data knowledge:
● convolutional models for images
● recurrent models for text and sound
● appropriate priors for latent variables
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LDA
Embedding priors in your model

http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf


Algorithms



AutƎƑƞƠreƒƬƈvƞ ƌaƱƈmƮƌ ƥikƄƋƢơoƎd ƌƨƝelƒ
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PixelCNN, PixelRNN, WaveNet
Autoregressive maximum likelihood models

Principle: maximum likelihood
Model: Autoregressive model with no latent variables

pθ(x) = ∏i pθ(xi| x1,x2...xi-1)
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PixelCNN, PixelRNN, WaveNet
Autoregressive maximum likelihood models

pθ(x) = ∏i pθ(xi| x1,x2...xi-1)

https://arxiv.org/pdf/1601.06759.pdf
https://arxiv.org/abs/1606.05328
https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Modelled with a convolutional or 
recurrent network

https://arxiv.org/pdf/1601.06759.pdf
https://arxiv.org/abs/1606.05328
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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PixelCNN, PixelRNN, WaveNet
Sampling from autoregressive maximum likelihood models

https://arxiv.org/pdf/1601.06759.pdf
https://arxiv.org/abs/1606.05328
https://deepmind.com/blog/wavenet-generative-model-raw-audio/

O(data_dim) 
sampling cost.

https://arxiv.org/pdf/1601.06759.pdf
https://arxiv.org/abs/1606.05328
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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Autoregressive maximum likelihood models

Pros: 
● powerful - state of the art for many applications
● explicit, exact density models

Cons: 
● High sampling cost



VarƈƚƓiƎƧƚl aƔƓƨeƧcƎƃƞƫs
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Variational autoencoders
Maximum likelihood for latent variable models

Principle: maximum likelihood
Model: Encoder-decoder model with latent variables

z

x
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Variational autoencoders
Maximum likelihood for latent variable models

Latent variables introduce an intractable integral: z

x
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Variational autoencoders
Maximum likelihood for latent variable models

A solution is to introduce a variational distribution q:
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Variational autoencoders
Maximum likelihood for latent variable models

A solution is to introduce a variational distribution q:

Encode information 
about x - 

make sampling 
efficient 

Stay close to the prior
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Variational autoencoders
Maximum likelihood for latent variable models

A solution is to introduce a variational distribution q:

reconstruction loss KL loss
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Variational autoencoders
Latent approximate maximum likelihood models

Reconstruction loss

KL loss
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Variational autoencoders

Pros: 
● inference

https://openreview.net/forum?id=Sy2fzU9gl

https://openreview.net/forum?id=Sy2fzU9gl
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Variational autoencoders

Cons: 
● Approximate density estimation
● Sensitive to choice of posterior distribution
● Low quality samples



GenƄƑƚƭivƄ ƚƃƯerƒƀƫƢal ƍƄƭwƨƑƤs
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Generative adversarial networks
Latent variable models without maximum likelihood

● Minimize distance between pθ and p*

○ provided by another model “discriminator”
○ connections to Jensen Shannon and Earth Mover’s

● How they model pθ 
○ model the generative process: sampling
○ no direct access to pθ

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

z

x

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
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Generative adversarial networks

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
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Generative adversarial networks
The model objective

D is a classifier trained with cross entropy loss.

Maximize probability 
that the data is real 

Maximize probability 
that the samples are fake
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Generative adversarial networks
Connection to Jensen Shannon divergence 

 If D is an optimal discriminator:

    G is minimizing JSD(pθ,p*)
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Generative adversarial networks
Connection to Jensen Shannon divergence 

In practice:

● simultaneous gradient descent 
● finite data

https://arxiv.org/abs/1710.08446

https://arxiv.org/abs/1710.08446
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Generative adversarial networks

Pros: 
● Generate compelling samples
● Enable learning from unpaired data
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Generative adversarial networks

Cons: 
● Instability in training
● No explicit density
● No inference
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Hybrids
VAE-GAN hybrids

Why: Combine the pros for VAEs and GANs.

What: variational inference and implicit models. 

https://arxiv.org/abs/1511.05644
https://arxiv.org/abs/1706.04987
https://arxiv.org/abs/1705.07761

https://arxiv.org/abs/1511.05644
https://arxiv.org/abs/1706.04987
https://arxiv.org/abs/1705.07761
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Hybrids
VAE-GAN hybrids

use a discriminator to 
estimate it

use a discriminator to 
estimate this
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We performed an extensive study and concluded:
● Use VAEs for inference
● GANs for generation

Hybrids
VAE-GAN hybrids

https://arxiv.org/abs/1802.06847

https://arxiv.org/abs/1802.06847


Evaluating generative models
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Evaluation of generative models
How can we compare generative models?
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Evaluation of generative models

No evaluation metric is able to capture all desired properties.

● sample quality
● generalization
● representation learning
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Evaluation of generative models
Use application specific metrics

No evaluation metric is able to capture all desired properties.

Evaluate performance based on the end goal:
● semi supervised learning: classification accuracy
● reinforcement learning: total agent reward
● data generation (eg: text to speech): human (user) evaluation 



I do not work on generative models 
- why should I care?



Generative 
models

PrinciplesTools
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Generative models as tool

● learning with scarce labelled data
● estimating uncertainty
● eliminating outliers
● completing missing data
● generating data
● building useful (disentangled) representations
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Generative models as a learning principles

Modelling probability distributions is at the core of machine 
learning.
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Classification
Maximum likelihood
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Reinforcement learning
As inference
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Reinforcement learning
As inference

This is entropy regularized policy gradient.
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Compression

http://www.helsinki.fi/~ahonkela/papers/infview.pdf

Choose the model that gives the shortest description of data

Goal: Find a code with which the receiver can reconstruct the original data

http://www.helsinki.fi/~ahonkela/papers/infview.pdf
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Compression

http://www.helsinki.fi/~ahonkela/papers/infview.pdf

http://www.helsinki.fi/~ahonkela/papers/infview.pdf


The principles behind generative 
models can be applied everywhere in 

ML.
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