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Disclaimer

● This is one view of the literature in the field, there are many others.
● Each citation is meant to be used as a representative example. Further related 

work can be found using connectedpapers.com.
● Email me with pointers or suggestions and I will update the slides.

https://www.connectedpapers.com/


Mihaela Rosca, EEML 2020

Unsupervised learning

 Aim: learn structure from data.
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Supervised learning

Learn a mapping from input x to 
output y.

Reinforcement learning

Learn behaviours to maximize 
rewards.

Unsupervised learning

 

Learn structure from data.

Challenge: generalization, having a 
flexible enough parametrization to 
learn the mapping.

 Challenge: No labels, no rewards. 
Generalization. 

Challenge: finding rewarding 
behaviour (exploration), 
generalization, transfer.

Types of learning

dog
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Unsupervised learning is hard
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Unsupervised learning is hard



Mihaela Rosca, EEML 2020

Why do we need it?
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Types of unsupervised learning

● Clustering
● Generative modeling
● Representation learning

Often the lines can be blurry.
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Clustering
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Generative modeling

Learn a model of the true underlying data distribution 
p*(x) from samples 

x1, x2 ... xn
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Generative modeling

Learn a model of the true underlying data distribution 
p*(x) from samples 

x1, x2 ... xn
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Representation learning

The success of deep learning tells us 
about the importance of learning 
representations.

Easier for downstream tasks to work with 
learned representations rather than high 
dimensional data.
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Representation learning

semi supervised learning

learned representations

reinforcement learning

 unsupervised  supervised, RL
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How to do unsupervised learning: a recipe

● Find an objective
● Find a model
● Find a way to learn the model using your objective
● Find an evaluation metric
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The problem
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Case study: generative modeling

Learn a model of the true underlying data distribution 
p*(x) from samples 

x1, x2 ... xn



Query it

What can we do with a distribution?

Sample from it



Continuous data:

● Images
● Audio/ Speech
● Health data:

○ Age
○ Weight

Types of data

Discrete data:

● Text
● Images
● Health data:

○ # of times someone was 
admitted to hospital

○  is smoker?
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The objective
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Measuring distances between distributions

How can we measure the distance between these two distributions?



Mihaela Rosca, EEML 2020

Measuring distances between distributions

Caveat: we only have samples from the true distribution.
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Monte Carlo estimation

How can we incorporate the data distribution in the objective if we only have 
samples from it?
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Why divergence/distance minimization?

- The objective of generative models is often to minimize a divergence or distance.
- Most common: Maximum likelihood (KL divergence).

Divergence and distance minimization
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KL divergence - maximum likelihood
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KL divergence - maximum likelihood

min

max



Effects of the choice of divergence

Want to learn more?
Eslami et all, Neural scene 
representation and 
rendering, Science (2018)

Want to learn more?
Goodfellow, et al. NIPS 2016 Tutorial:
Generative Adversarial Networks
Arxiv (2016)



Jensen Shannon divergence
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Given a model family, different divergences can lead to a vastly different 
distribution.
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Optimising Reverse KL  & JSD - not so easy

Monte Carlo estimation 

Entropy hard to estimate Need access to the true data distribution



Mihaela Rosca, EEML 2020

Beyond divergence minimization - two player games

Discriminator Generator

Learns to distinguish 
between real and 
generated data.

Learns to generate data 
to “fool” the discriminator.

vs



G(z)

generated datagenerator (model)

  G

real data x ~ P*(x)   D real or generated?

Generative adversarial networks
Want to learn more?

Eslami et all, Neural scene 
representation and 
rendering, Science (2018)

Want to learn more?
Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)



log-probability that D correctly 
predicts real data x are real

log-probability that D correctly predicts 
generated data are generated

Generative adversarial networks
Want to learn more?Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)



Are GANs doing divergence minimization?

If the discriminator (D) is optimal: 
the generator is minimizing the Jensen Shannon divergence 

between the true and generated distributions.

Connection to optimality:
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Other divergences and distances

Wasserstein Distance

Want to learn more?Want to learn more?
Arjovsky,, et al Wasserstein GAN
ICML (2017)
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Other divergences and distances

Wasserstein Distance

Want to learn more?Want to learn more?
Arjovsky,, et al Wasserstein GAN
ICML (2017)
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Other divergences and distances

Wasserstein Distance

Learning

Estimation



GANs: More than divergence minimization

In practice D is not optimal:
limited computational resources

we do not have access to the true data distribution (just samples)
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Discriminators as learned “distances”

We can think of D (the discriminator) as learning a “distance” between the 
data and model distribution that can provide useful gradients to the model.

Want to learn more?Want to learn more?
Arora, et al Generalization and 
Equilibrium in Generative Adversarial 
Nets.  ICLR (2017)
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GANs (learned distance) or divergence minimization?

GANs Divergence minimization

      good samples

      learned loss function

       hard to analyze dynamics (game theory)

       (in practice) no optimal convergence 
guarantees

      optimal convergence guarantees

      easy to analyze loss properties

       hard to get good samples

       loss functions don’t correlate with      

       human evaluation
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The model
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The importance of the model (in maximum likelihood training)

Model

Behaviour

Not powerful 
enough

Too powerful

bad model fit overfitting
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The importance of the model (in maximum likelihood training)

Model

Behaviour

Not too 
powerful

Too powerful

bad model fit overfitting

where we want to be



Explicit likelihood models

Model the density p(x).

Implicit models

Do not model the density, but the 
sampling path.



z

x

Latent variable modelsObserved variable models



● Challenge: learning the factor unsupervised
● Sampling is often cheap
● Representation learning

○ Inverting the generation process = inference

 Generation

  hair colour
  eye colour
  nose shape

z

x

glasses
background
face angle



 Generation

z

x

 Inference
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Explicit models - canonical distributions

● Learn parameters of canonical distribution
● Example: Gaussian, Poisson
● Pro: Easy to learn
● Con: Not very expressive, especially in high dimensions
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Explicit models - mixture models

● Pro: models multi modality.
● Con: number of modes are fixed.

● Mixture components can be simple or complex distributions.
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Explicit models - autoregressive models

● Pro: Very expressive
● Challenge: Slow at sampling (though can be parallelize)
● Modality: great for sequential data, text, audio but have also been used for 

images
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Explicit models - normalizing flows

Y

X

X and Y have the same dimension!

Challenge: modeling invertible functions using neural networks

Want to learn more?Want to learn more?
Rezende et all, Variational Inference with 
Normalizing Flows,  ICML 2015
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Explicit models - normalizing flows

Composing normalizing flows leads to another flow. 

Simple transformations can be used to build complex distributions.

K = number of flows
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Explicit latent variable models

z

x
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Lower bound on maximum likelihood objective (ELBO):

Approximate posterior

Explicit latent variable models

Want to learn more?Want to learn more?
Kingma et al., Auto-Encoding Variational 
Bayes, ICLR 2014
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Implicit models - latent variable models

Directly the sampling path, without require 
likelihoods explicitly (no need for the sum rule).  

Often not trained with maximum likelihood, but 
suitable for GAN training. 

z

x
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Learning
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Learn using divergence minimization

Maximum likelihood:

To learn parameters by gradient descent:

Monte Carlo estimation



Mihaela Rosca, EEML 2020

Stochastic gradient estimation

Cannot put the gradient inside the expectation. But there are other 
ways to leverage Monte Carlo estimation to compute gradients.
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A few training criteria affected

GANs

Bound on ML (ELBO)
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Options
Score function

● few assumptions on cost
● no assumptions on p
● often high variance
● discrete and continuous 

data

  Pathwise

● cost needs to be 
differentiable

● assumptions on p
● often low variance
● continuous data

Measure valued

● few assumptions on cost
● computationally 

expensive
● low variance

Want to learn more?Want to learn more?
Mohamed, et al. Monte Carlo gradient 
estimation in Machine learning. JMLR 
(2020)
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We are interested in having Monte Carlo 
estimators not only for the loss, but also to 

estimate gradients for learning.
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Often papers present algorithms, which are a choice of:

● objective
● model
● learning choice (parameter update rules)
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Models, training and learning criteria

Explicit models are often trained by maximum likelihood:
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Want to learn more?
Radford, et al. Language 
Models are Unsupervised 
Multitask Learners, OpenAI 
Blog  (2019)Autoregressive models trained by 

maximum likelihood

● PixelCNN/PixelRNN (image data)
● Wavenet (audio)
● GPT (text)

Want to learn more?
van den Oord , et al. 
Conditional Image 
Generation with PixelCNN 
Decoders, Neurips (2016)

Want to learn more?
van den Oord , et al. Pixel 
Recurrent Neural Networks, 
ICML  (2016)

Want to learn more?
van den Oord , et al. 
WaveNet: A Generative 
Model for Raw Audio, arxiv 
(2016)

Figure for van den Oord, 2016.
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This assumes:

● The GAN model is an implicit latent variable model (need not be).
● The model is learned using the pathwise estimator (need not be).

You will often see the GAN criteria written as:

Implicit latent variable models & GAN training
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Evaluation
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Why evaluation is hard

No evaluation metric is able to capture all desired properties.

- sample quality
- generalization
- representation learning

Evaluate based on end goal
semi supervised learning: classification accuracy
reinforcement learning: agent reward
data generation: human (user) evaluation

Want to learn more?Want to learn more?
Theis, et al A note on the evaluation of 
generative models 
International Conference for Learning 
Representations (2016)
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Applications
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Image generation

Implicit Latent variable + GAN

Photo realistic sample quality.

Modality matters: GANs on 
discrete data such as text are 
harder to train.

Want to learn more?
Brock et all Large scale 
gan training for high 
fidelity natural image 
synthesis  Neurips (2018)
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Generative Adversarial Imitation 
Learning

Want to learn more?
Eslami et all, Neural scene 
representation and 
rendering, Science (2018)

Want to learn more?
Ho et all, Generative Adversarial 
Imitation Learning Neurips (2016)

Learn agents to imitate 
the behaviour of an 
expert (human), using a 
discriminator.



Mihaela Rosca, EEML 2020

Representation learning with explicit 
latent variable models (GQN)

Slide thanks to Ali Eslami.

Want to learn more?
Eslami et all, Neural scene 
representation and 
rendering, Science (2018)

Want to learn more?
Eslami et all, Neural scene 
representation and rendering, Science 
(2018)
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Exploration in RL

Density estimation can be used to test for 
out of distribution data.

In RL, this can be used to provide an 
exploration bonus for unseen states:

have I been here before?

Want to learn more?
Eslami et all, Neural scene 
representation and 
rendering, Science (2018)

Want to learn more?
Ostrovski, et al Count-Based Exploration 
with Neural Density Models 
International Conference on Machine
Learning (2016)
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Autoregressive text models trained by maximum likelihood can be used for multiple 
downstream tasks.  

Key: Neural architecture,  billions of parameters and large amounts of data

Figure from  Radford et al. (2019)

Multi task language learning
Want to learn more?

Eslami et all, Neural scene 
representation and 
rendering, Science (2018)

Want to learn more?
Radford, et al .Language Models are 
Unsupervised Multitask Learners (2019)
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Image to image translation - CycleGAN
Want to learn more?

Eslami et all, Neural scene 
representation and 
rendering, Science (2018)

Want to learn more?
Zhu et all, Unpaired Image-to-Image 
Translation using Cycle-Consistent 
Adversarial Networks, ICCV (2017)
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Conclusion



You have choices! Many choices!



Mihaela Rosca, EEML 2020

Options
Objective

● Divergence minimization
● Adversarial approaches

  Model

● Explicit models
● Implicit models
● Observed models
● Latent variable models

Learning

● Monte Carlo estimators 
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Thank you!


