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● Implicit Gradient Regularisation Barrett and Dherin, ICLR 2021

● Discretization drift in two player games Rosca et al, ICML 2021

● On a continuous time model of gradient descent dynamics and instability in deep learning 

Rosca et al, TMLR 2023

● On the Origin of Implicit Regularization in Stochastic Gradient Descent Smith et al, ICLR 2021

● Implicit regularisation in stochastic gradient descent: from single-objective to two-player 

games, Rosca et al, 2023, ICML workshop

There is a lot of interesting related work, check out the related work section in these papers!

You can also find an overview in my thesis, “On discretisation drift and smoothness regularisation in deep 
learning”.

Discussed works

https://openreview.net/forum?id=3q5IqUrkcF
https://arxiv.org/abs/2105.13922
https://arxiv.org/abs/2302.01952
https://arxiv.org/abs/2101.12176
https://arxiv.org/abs/2307.05789
http://elarosca.net/phd_thesis.pdf


Public    

Aim: analyse gradient descent updates aiming to minimise 
function E.

parameter dimension: D
h denotes the learning rate throughout this talk.
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Continuous dynamics

Euler integration

Discrete dynamics

Gradient descent!



Public    Approaches of analysing optimisation

Discrete time Continuous time

● analyse updates as used in practice 
● directly accounts for the learning rate

● analyse the underlying continuous system
● tends to be easier analytically 
● the gradient flow does not account for 

learning rates (there can be a gap between 
continuous analysis results and what 
happens in practice)



Public    Appeal and challenges of continuous time

Negative gradient flow (NGF):

following the NGF decreases E and that’s easy to 
prove, but that is not true of gradient descent!



Public    Discretization drift for Euler updates

Discretization drift



Public    Discretization drift for Euler updates

Discretization drift



Public    Modified loss functions

Minimises original loss function E.

Minimises modified loss function. 
Closer to what gradient descent does. 
We can find out which losses are implicit 
minimised when we train models with gradient 
descent.
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Implicit gradient regularisation

Barrett et Dherin, ICLR 2021



Public    Backward error analysis

Discretization drift



Public    BEA proof visualisation



Public    BEA proof visualisation



Public    BEA proof visualisation

IGR flow



Public    BEA proof visualisation

IGR flow

=0



Public    IGR flow

IGR flow

NGF

The NGF and IGR flow have errors of              and               respectively. 
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IGR flow

NGF

The NGF and IGR flow have errors of              and               respectively. 

From modified ODEs to modified losses:
vector fields as negative gradients



Public    Modified loss functions

Minimises E.

Minimises 
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Implicit gradient 
regularization aids 
generalization.

Implicit gradient regularization



Public    Summary

● Backward error analysis is a technique that can 
be used to find modified ODEs, which have a 
lower order of error in learning rate to gradient 
descent.

● With this approach, we can find implicit 
regularisers.
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How about instability?
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On a continuous time model of gradient descent 
dynamics and instability in deep learning

Rosca et al,  TMLR 2023



Public    

Our goal: use a continuous time perspective to analyse 
gradient descent, including its observed instabilities. 



Public    Existing continuous time flows

Negative gradient flow (NGF):

Implicit Gradient Regularization 
flow (IGR flow): 

The IGR flow was introduced by Barrett and Dherin, 2021.



Public    Limitations of existing continuous time flows

Existing continuous time flows do not handle instabilities observed using gradient descent.



Public    Plenty of space to improve: deep learning



Public    Our approach: Backward Error Analysis

Find

such that the difference between gradient descent and the continuous 
time flow after 1 discrete update is               .

The correction terms fi will depend on E and its derivatives.



Public    Our approach: Backward Error Analysis

Our approach: look at all correction terms (in all n) which only contain first and second order 
derivatives of E.



Public    Third order flow

Principal terms: 
hessian and gradient only

Non principal term



Public    The Principal Flow

Properties of the Principal Flow (PF):

- is exact for quadratic losses
- generalisation of the NGF 
- stability analysis correctly predicts that gradient descent is not always 

attracted to local minima

Hessian              eigenvalues and eigenvectors



Public    The Principal Flow

stability coefficient in eigendirection with index i

PF

NGF
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Stability coefficient is complex, 
with  positive real part.

The Principal Flow: exact for quadratic case

Stability coefficient is 
real and negative. 

Stability coefficient is complex, 
with negative real part.



Public    The Principal Flow and neural networks: small neural nets

The Principal Flow captures gradient descent better than existing flows 
in neural network training locally (when the number of iterations is 
small) both in the stable and unstable cases.

Network: 2 layer MLP



Public    The Principal Flow and neural networks

The Principal Flow captures the 
dynamics of the dot product 
between the gradient and the 
leading Hessian eigenvector 
better than existing flows. 



Public    The edge of stability in deep learning

The edge of stability phenomenon in deep learning has been coined 
by Cohen et al, 2021.



Public    The Principal Flow and edge of stability: more than just eigenvalues

The stability coefficients 
show the strength of 
instabilities according to the 
local behaviour of other flows.

stability coefficient in 
eigendirection with index i



Public    The Principal Flow and edge of stability

The stability coefficients show the strength of instabilities according to the local 
behaviour of other flows.



Public    Is the Principal Flow enough to understand GD? 

The PF can help explain instabilities in GD,
but there are cases where higher order 
terms help stabilise the trajectory.

Regarding NNs, there have also been 
studies showing the non-quadratic form of 
NNs. 
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when this term is close to 0, we are 
minimising in that direction, 
which can have a stabilising effect. 

Is the Principal Flow enough to understand GD? 
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Stabilising training



Public    Understanding total drift

The PF reveals an important quantity



Public    Understanding total drift

Investigating further reveals:

PF = NGF



Public    Understanding total drift

Investigating further reveals:

GD= NGF



Public    Bonus: Corridor Geometry in Gradient-Based Optimization

● The GD = GF condition can be proven as an iff
● With this insight, can develop a learning rate on corridors that recovers the 

Polyak learning rate

Corridor Geometry in Gradient-Based Optimization: Dherin and Rosca, 2024

GD= NGF



Public    Understanding total discretisation drift

Investigating further reveals:

NGF



Public    Understanding  discretisation drift



Public    Stabilising training with Drift Adjusted Learning (DAL)



Public    DAL-p: controlling generalisation versus stability



Public    DAL-p: also leads to flat minima

At convergence, DAL leads to 
flatter minima than SGD.



Public    Summary

● We need to operate in complex space to handle 
instabilities observed with gradient descent.

● Model continuous-time models of gradient descent 
can be a useful tool to understand and improve 
optimisation.



Public    

How about stochasticity?



Public    

How about stochasticity?



Public    

Implicit regularisation in stochastic gradient 
descent: from single-objective to two-player 
games

Rosca et Deisenroth,  ICML workshop 2023
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All we have said thus far also applies to SGD, but only to 1 step of SGD.

How can we model what happens when we take multiple SGD steps?

Are there implicit regularisation effects specific to SGD?

Stochasticity so far
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On the Origin of Implicit Regularization in Stochastic Gradient Descent, Smith et al, ICLR 2021

If one takes expectations over the shufflings in one epoch, Smith et al find the implicit regulariser: 

The effect of implicit regularization is 
stronger for smaller batch sizes. 

Stochasticity: expectation over one epoch (Smith et al)
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If we allow for a dependence on initial parameters, we can write (for any n):

Recent work: no need to work in expectation
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n=2

Recent work: no need to work in expectation
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Recent work: no need to work in expectation

In a second step of SGD, there is an implicit 
regularisation effect of minimising the dot 
product between the current gradient and the 
gradient at the previous iteration!



Public    Summary

● We can model the implicit regularisation effects of 
more than 1 SGD step 

● There is an alignment pressure between gradients 
at consecutive iterations

○ empirical work needed to show its effects
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Beyond single objective
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How about two-player games?



Public    Generative adversarial networks

G(z)

generated data

real data x
real or generated?

parameters: 

parameters: 

Discriminator

Generator



Public    Generative adversarial networks

G(z)

generated data

real data x
real or generated?

parameters: 

parameters: 

Discriminator

Generator
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Discretization Drift in Two-Player Games

Rosca et al,  ICML 2021



Public    Two-player games continuous dynamics



Public    Two-player games

discretisation discretisation

Simultaneous Euler updates Alternating Euler updates



Public    Differentiable two-player games

Gradient descent!



Public    Modified ODEs for two-player games

Discrete dynamics Continuous dynamics

Simultaneous Euler updates
Backward error analysis



Public    Modified ODEs for two-player games

Discrete dynamics Continuous dynamics

Simultaneous Euler updates
Backward error analysis

Goal: find f1 and g1



Public    Building intuition



Public    Building intuition



Public    Modified ODEs as tools for stability analysis

Jacobian of the original game
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Having access different ODEs for simultaneous and alternating updates, we can now 
analyse the stability of simultaneous and alternating gradient descent separately.



Public    Zero-sum games



Public    Zero-sum games: simultaneous and alternating updates

Simultaneous updates Alternating updates

learning rate ratio



Public    Summary

● Discretisation drift has two terms in games: the self 
term and interaction term

● The interaction term can destabilise the game, and 
using explicit regularisation to cancel it can improve 
stability and performance



Public    Going beyond SGD: momentum and Adam

Beyond SGD:

● Backward error analysis for SGD with momentum
○ Implicit regularization in Heavy-ball momentum accelerated stochastic gradient 

descent, Avrajit Ghosh, He Lyu, Xitong Zhang, Rongrong Wang
● Backward error analysis for Adam

○ On the Implicit Bias of Adam, Matias D. Cattaneo, Jason M. Klusowski, Boris Shigida

Edge of stability results:

● on Adam
○ Adaptive Gradient Methods at the Edge of Stability, Cohen et al

● with a student at UCL, we showed that offline RL can exhibit edge of stability
○ Investigating the edge of stability phenomenon in reinforcement learning, 
○ Rares Iordan, Marc Peter Deisenroth, Mihaela Rosca

https://arxiv.org/abs/2302.00849
https://arxiv.org/abs/2302.00849
https://arxiv.org/abs/2309.00079
https://arxiv.org/abs/2207.14484
https://arxiv.org/abs/2307.04210


Public    Talk summary

● Continuous time approaches are a useful tool to 
understand optimisation

● We can use them to find implicit regularisers as well 
as stabilising training

● Different dynamics between one objective and 
two-player games

● Discretisation drift affects all our training runs! 



Mihaela Rosca, 2024

Thank you!


